53 resultados para Radial basis function network
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
Soil wind erosion is the primary process and the main driving force for land desertification and sand-dust storms in and and semi-arid areas of Northern China. While many researchers have studied this issue, this study quantified the various indicators of soil wind erosion, using the GIS technology to extract the spatial data and to construct a RBFN (Radial Basis Function Network) model for Inner Mongolia. By calibrating sample data of the different levels of wind erosion hazard, the model parameters were established, and then the assessment of wind erosion hazard. Results show that in the southern parts of Inner Mongolia wind erosion hazards are very severe, counties in the middle regions of Inner Mongolia vary from moderate to severe, and in eastern are slight. Comparison of the results with other research shows conformity with actual conditions, proving the reasonability and applicability of the RBFN model. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
The paper demonstrates the nonstationarity of algal population behaviors by analyzing the historical populations of Nostocales spp. in the River Darling, Australia. Freshwater ecosystems are more likely to be nonstationary, instead of stationary. Nonstationarity implies that only the near past behaviors could forecast the near future for the system. However, nonstionarity was not considered seriously in previous research efforts for modeling and predicting algal population behaviors. Therefore the moving window technique was incorporated with radial basis function neural network (RBFNN) approach to deal with nonstationarity when modeling and forecasting the population behaviors of Nostocales spp. in the River Darling. The results showed that the RBFNN model could predict the timing and magnitude of algal blooms of Nostocales spp. with high accuracy. Moreover, a combined model based on individual RBFNN models was implemented, which showed superiority over the individual RBFNN models. Hence, the combined model was recommended for the modeling and forecasting of the phytoplankton populations, especially for the forecasting.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
Resumo:
For a class of nonlinear dynamical systems, the adaptive controllers are investigated using direction basis function (DBF) in this paper. Based on the criterion of Lyapunov' stability, DBF is designed which guarantees that the output of the controlled system asymptotically tracks the reference signals. Finally, the simulation shows the good tracking effectiveness of the adaptive controller.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79 . 1.45 . 1.18-competitive separately for traditional timeout PM . adaptive predictive PM and stochastic PM.
Resumo:
In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.
Resumo:
Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.
Resumo:
A neural network-based process model is proposed to optimize the semiconductor manufacturing process. Being different from some works in several research groups which developed neural network-based models to predict process quality with a set of process variables of only single manufacturing step, we applied this model to wafer fabrication parameters control and wafer lot yield optimization. The original data are collected from a wafer fabrication line, including technological parameters and wafer test results. The wafer lot yield is taken as the optimization target. Learning from historical technological records and wafer test results, the model can predict the wafer yield. To eliminate the "bad" or noisy samples from the sample set, an experimental method was used to determine the number of hidden units so that both good learning ability and prediction capability can be obtained.
Resumo:
Automatic molecular classification of cancer based on DNA microarray has many advantages over conventional classification based on morphological appearance of the tumor. Using artificial neural networks is a general approach for automatic classification. In this paper, Direction-Basis-Function neuron and Priority-Ordered algorithm are applied to neural networks. And the leukemia gene expression dataset is used as an example to testify the classifier. The result of our method is compared to that of SVM. It shows that our method makes a better performance than SVM.
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.
Resumo:
Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a new scheme for omnidirectional object-recognition in free space. The proposed scheme divides above problem into several onmidirectional object-recognition with different depression angles. An onmidirectional object-recognition system with oblique observation directions based on a new recognition theory-Biomimetic Pattern Recognition (BPR) is discussed in detail. Based on it, we can get the size of training samples in the onmidirectional object-recognition system in free space. Omnidirection ally cognitive tests were done on various kinds of animal models of rather similar shapes. For the total 8400 tests, the correct recognition rate is 99.89%. The rejection rate is 0.11% and on the condition of zero error rates. Experimental results are presented to show that the proposed approach outperforms three types of SVMs with either a three degree polynomial kernel or a radial basis function kernel.