91 resultados para RNA silencing
Resumo:
Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.
Resumo:
The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.
Resumo:
Double-stranded RNA (dsRNA) has been shown to be a useful tool for silencing genes in zebrafish (Danio rerio), while the blocking specificity of dsRNA is still of major concern for application. It was reported that siRNA (small interfering RNA) prepared by endoribonuclease digestion (esiRNA) could efficiently silence endogenous gene expression in mammalian embryos. To test whether esiRNA could work in zebrafish, we utilized Escherichia coli RNaseIII to digest dsRNA of zebrafish no tail (ntl), a mesoderm determinant in zebrafish and found that esi-ntl could lead to developmental defects, however, the effective dose was so close to the toxic dose that esi-ntl often led to non-specific developmental defects. Consequently, we utilized SP6 RNA polymerase to produce si-ntl, siRNA designed against ntl, by in vitro transcription. By injecting in vitro synthesized si-ntl into zebrafish zygotes, we obtained specific phenocopies of reported mutants of ntl. We achieved up to a 59%no tail phenotype when the injection concentration was as high as 4 mu g/mu L. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization analysis showed that si-ntl could largely and specifically reduce mRNA levels of the ntl gene. As a result, our data indicate that esiRNA is unable to cause specific developmental defects in zebrafish, while siRNA should be an alternative for downregulation of specific gene expression in zebrafish in cases where RNAi techniques are applied to zebrafish reverse genetics.
Resumo:
Retinoid X receptor (RXR)/ultraspiracle (USP) is the heterodimeric partner of ecdysteroid receptor and is required for the molting process of arthropods. To better understand the molecular aspects governing the process of molting in shrimp, the full-length cDNA of two RXRs, named as FcRXR-1 and FcRXR-2 were obtained from Chinese shrimp Fenneropenaeus chinensis which were of 1715 and 1700 bp long, revealed a 1315 and 1300 bp open reading frame (ORF) respectively. Quantitative Real time PCR analysis showed a marked tissue-specific difference in the expression of FcRXR transcript, which revealed that the expression of FcRXR Could be regulated in a tissue-specific manner. Moreover, high expression of FcRXR mRNAs was observed in late pre-molt period (D3) and post molt stages (A-B) of shrimp. Among the two isoforms, FcRXR-2 appeared in a considerably high level in all the stages compared to the FcRXR-1. In addition, we examined the temporal expression of two chitinase genes: FcChitinase (FcChi) and FcChitinase-1 (FcChi-1) during the molt cycle of F chinensis. Both the FcChi and FcChi-1 transcripts were detected in all stages of molting, although considerable fluctuations observed through the molt cycle. Injection of double stranded RXR (dsRXR) into juvenile shrimp resulted in a maximum silencing effect at 48 h post injection. We analyzed the expression levels of FcChi, FcChi-1 and the ecdysone inducible gene E75 (FcE75) in samples of dsRXR injected shrimp. Significant reduction in levels of both FcE75, FcChi and FcChi-1 transcripts Occurred in the silenced shrimp. This correlation suggested that RXR might involve in the downstream regulation of E75 and chitinase gene transcription in the ecdysone signaling pathway of decapod crustaceans. (C) 2009 Published by Elsevier Inc.
Resumo:
Zebrafish has been generally considered as an excellent model in case of drug screening, disease model establishment, and vertebrate embryonic development study. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against VEGF gene in zebrafish was tested, and its effect on vascular development was assed, too. Using RT-qPCR, blood vessel staining, and in situ hybridization, we confirmed certain transcriptional activity and down regulation of gene expression by the vector. In situ hybridization analysis indicated selective inhibition of NRP1 expression in the VEGF gene loss of function model, which might imply in turn that VEGF could not only activate endothelial cells directly but also could contribute to stimulating angiogenesis in vivo by a mechanism that involved up-regulation of its cognate receptor expression in zebrafish. This contributed to a better understanding of molecular mechanisms of cardiovascular development. The system improved the success rate in making inducible knockdown and widened the possibilities for better therapeutic targets in zebrafish.
Resumo:
RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.