58 resultados para RNA induced silencing complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractive indices of crystalline phase-change films are usually obtained by thermal-induced crystallization. However, this is not accurate, because the crystallization of phase-change film in rewritable optical disks is laser induced. In this study, we use the initializer to crystallize the phase-change films. The dependence of the refractive index n and the extinction coefficient k of the phase-change films on the initialization conditions are studied. Remarkable changes of the refractive indices (especially k) are found when the initialization laser power density is 6.63 mW/mum(2) and the initialization velocity is 4.0 m/s. At the same time, the structure changes of the phase-change films are also studied. This dependence is explained by the structure change of the films. These results are significant in improving the accuracy of optical design and the thermal simulation of phase-change optical disks, as well as in the study of phase-change optical disks at shorter wavelengths. (C) 2003 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulges are common features of folded RNA structures. The RNA axial kinking caused by bulges has been confirmed by many experiments. Usually, a kinking angle zeta and a bending angle theta are used to describe the kinking and twisting of RNA molecules containing bulges. Here, we present two additional angles (twist angle zeta(1), twist angle zeta(2)) to describe the deformation of RNA helices induced by bulge loops because only two angles (a kinking angle zeta and a bending angle theta) are not enough to define the deformation of RNA induced by bulges. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman measurements and photoluminescence (PL) were performed on the metal-organic chemical-vapor deposition epitaxially grown GaN before and after the implantation with Er and Er+O. Several Raman defect modes have emerged from the implantation-damaged samples. The structures around 300 and 595 cm(-1) modes are attributed to the disorder-activated Raman scattering, whereas the 670 cm(-1) peak is assigned to nitrogen-vacancy-related defect scattering. One additional peak at 360 cm(-1) arises after Er+O coimplantation. This Raman peak is attributed to the O-implantation-induced defect complex. The appearance of the 360 cm(-1) mode results in the decrease of the Er3+ -related infrared PL intensity for the GaN:Er+O samples. (C) 2004 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical study on wave dynamic processes occurring in muzzle blast flows, which are created by a supersonic projectile released from the open-end of a shock tube into ambient air, is described in this paper. The Euler equations, assuming axisymmetric flows, are solved by using a dispersion-controlled scheme implemented with moving boundary conditions. Three test cases are simulated for examining friction effects on the muzzle flow. From numerical simulations, the wave dynamic processes, including two blast waves, two jet flows, the bow shock wave and their interactions in the muzzle blasts, are demonstrated and discussed in detail. The study shows that the major wave dynamic processes developing in the muzzle flow remain similar when the friction varies, but some wave processes, such as shock-shock interactions, shock-jet interactions and the contact surface instability, get more intensive, which result in more complex muzzle blast flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in prediction the transformation behavior of a SMA (Cu-Al-Zn-Mn) under complex thermomechanical load (including complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vortex dislocations in wake-type flow induced by three types of spanwise disturbances superimposed on an upstream velocity profile are investigated by direct numerical simulations. Three distinct modes of vortex dislocations and flow transitions have been found. A local spanwise exponential decay disturbance leads to the appearance of a twisted chainlike mode of vortex dislocation. A stepped spanwise disturbance causes a streamwise periodic spotlike mode of vortex dislocation. A spanwise sinusoidal wavy disturbance with a moderate waviness causes a strong unsteadiness of wake behavior. This unsteadiness starts with a systematic periodic mode of vortex dislocation in the spanwise direction followed by the spanwise vortex shedding suppressed completely with increased time and the near wake becoming a steady shear flow. Characteristics of these modes of vortex dislocation and complex vortex linkages over the dislocation, as well as the corresponding dynamic processes related to the appearance of dislocations, are described by examining the variations of vortex lines and vorticity distribution. The nature of the vortex dislocation is demonstrated by the substantial vorticity modification of the spanwise vortex from the original spanwise direction to streamwise and vertical directions, accompanied by the appearance of noticeable vortex branching and complex vortex linking, all of which are produced at the locations with the biggest phase difference or with a frequency discontinuity between shedding cells. The effect of vortex dislocation on flow transition, either to an unsteady irregular vortex flow or suppression of the Kaacutermaacuten vortex shedding making the wake flow steady state, is analyzed. Distinct similarities are found in the mechanism and main flow phenomena between the present numerical results obtained in wake-type flows and the experimental-numerical results of cylinder wakes reported in previous studies.