162 resultados para Quantum ring
Resumo:
In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels are sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R-1 and TSQR's inner radius R-2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.
Resumo:
Spin states and persistent currents are investigated theoretically in a quantum ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent delta-potential for electrons and results in gaps in the energy spectrum, consequently suppressing the oscillation of the persistent currents. The competition between the Zeeman splittings and the s-d exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.
Resumo:
The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring.
Resumo:
Well-defined complex quantum ring structures formed by droplet epitaxy are demonstrated. By varying the temperature of the crystallizing Ga droplets and changing the As flux, GaAs/AlGaAs quantum single rings and concentric quantum double rings are fabricated, and double-ring complexes are observed. The growth mechanism of these quantum ring complexes is addressed. (c) 2006 American Institute of Physics.
Resumo:
In the framework of effective-mass envelope function theory, the valence energy subbands and optical transitions of the InAs/GaAs quantum ring are calculated by using a four-band valence band model. Our model can be used to calculate the hole states of quantum wells, quantum wires, and quantum dots. The effect of finite offset and valence band mixing are taken into account. The energy levels of the hole are calculated in the different shapes of rings. Our calculations show that the effect of the difference between effective masses of holes in different materials on the valence subband structures is significant. Our theoretical results are consistent with the conclusion of the recent experimental measurements and should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 American Institute of Physics.
Resumo:
In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.
Resumo:
The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
Coherent transport through a quantum dot embedded in one arm of a double-slit-like Aharonov-Bohm (AB) ring is studied using the Green's function approach. We obtain experimental observations such as continuous phase shift along a single resonance peak and sharp inter-resonance phase drop. The AB oscillations of the differential conductance of the whole device are calculated by using the nonequilibrium Keldysh formalism. It is shown that the oscillating conductance has a continuous bias-voltage-dependent phase shift and is asymmetric in both linear and nonlinear response regimes.
Resumo:
For a triangular triple quantum dots (TTQDs) ring with three terminals, when lowering one of the dot-lead coupling to realize the left-right (L-R) reflection symmetry coupling, the internal C-upsilon of the TTQDs is well preserved in the absence of many-body effect for the symmetric distribution of the dot-lead coupling on the molecular orbits. In the presence of Kondo effect, the decrement of one of the dot-lead couplings suppresses the inter-dot hopping. This happens especially for the coupled quantum dot (QD), which decouples with the other two ones gradually to form a localized state near the Fermi level As a result, the internal dynamic symmetry of the TTQDs ring is reduced to L-R reflection symmetry, and simultaneously, the linear conductance is lifted for the new forming molecular orbit near the Fermi level
Resumo:
We investigate the electron transport through a double-slit-like Aharonov-Bohm (AB) ring with a quantum dot (QD) embedded in one of its arms. Considering both the resonance of the dot and interference effect, the magnitude and phase of the transmission amplitude through the QD are calculated using Green's function approach. The numerical results are in good agreement with the experimental observations.
Resumo:
We theoretically study the electron transport through a double quantum dot (QD) in the Coulomb blockade regime and reveal the phase character of the transport by embedding the double QD in a mesoscopic Aharonov-Bohm ring. It is shown that coherent transport through the double QD is preserved in spite of intradot and interdot Coulomb interactions.
Resumo:
We theoretically investigate the charge and spin currents in a three-terminal mesoscopic ring in the presence of a uniform and nonuniform Rashba spin-orbit interaction (SOI). It is shown that a fully spin-polarized charge current and a pure spin current can be generated by tuning the probe voltages and/or the strength of the Rashba SOI. The charge and spin currents oscillate as the strength of the Rashba SOI increases induced by the spin quantum interference. The ratio of probe voltages oscillates synchronously with the pure spin current as the strength of the Rashba SOI increases in a nonuniform Rashba ring, while it remains constant in a uniform Rashba ring. We demonstrate theoretically that a three-terminal uniform Rashba ring can be used as a spin polarizer and/or spin flipper for different spin injections, and a nonuniform Rashba ring could allow us to detect the pure spin current electrically. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3054322]
Resumo:
The ballistic spin transport in one-dimensional waveguides with the Rashba effect is studied. Due to the Rashba effect, there are two electron states with different wave vectors for the same energy. The wave functions of two Rashba electron states are derived, and it is found that their phase depend on the direction of the circuit and the spin directions of two states are perpendicular to the circuit, with the +pi/2 and -pi/2 angles, respectively. The boundary conditions of the wave functions and their derivatives at the intersection of circuits are given, which can be used to investigate the waveguide transport properties of Rashba spin electron in circuits of any shape and structure. The eigenstates of the closed circular and square loops are studied by using the transfer matrix method. The transfer matrix M(E) of a circular arc is obtained by dividing the circular arc into N segments and multiplying the transfer matrix of each straight segment. The energies of eigenstates in the closed loop are obtained by solving the equation det[M(E)-I]=0. For the circular ring, the eigenenergies obtained with this method are in agreement with those obtained by solving the Schrodinger equation. For the square loop, the analytic formula of the eigenenergies is obtained first The transport properties of the AB ring and AB square loop and double square loop are studied using the boundary conditions and the transfer matrix method In the case of no magnetic field, the zero points of the reflection coefficients are just the energies of eigenstates in closed loops. In the case of magnetic field, the transmission and reflection coefficients all oscillate with the magnetic field; the oscillating period is Phi(m)=hc/e, independent of the shape of the loop, and Phi(m) is the magnetic flux through the loop. For the double loop the oscillating period is Phi(m)=hc/2e, in agreement with the experimental result. At last, we compared our method with Koga's experiment. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253752]
Resumo:
In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.