328 resultados para QUASI-CRYSTALS
Resumo:
In this paper, we investigate the stimulated emission in a 12-fold symmetric quasiperiodic photonic crystal. The stimulated emission peaks in the quasiperiodic photonic crystal are more abundant and stronger than those in a periodic crystal. Also, more stimulated emission peaks appear as the crystal size and the gain increase, and some frequencies of the peaks are independent of the incident direction. These phenomena may be due to wave localization in the quasiperiodic photonic crystal.
Resumo:
Ti-based icosahedral quasicrystalline phase (I-phase) exhibited excellent hydrogen storage property for special structure. Unfortunately, the application as the negative electrode material of the nickel-metal hydride batteries was limited due to the poor electrochemical kinetics. Meanwhile, rare-earth element was beneficial to the electrochemical properties of Ti, Zr-based alloy.
Resumo:
Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).
Resumo:
The properties of noncollinear optical parametric amplification (NOPA) based on quasi-phase matching of periodically poled crystals are investigated, under the condition that the group velocity matching (GVM) of the signal and idler pulses is satisfied. Our study focuses on the dependence of the gain spectrum upon the noncollinear angle, crystal temperature, and crystal angle with periodically poled KTiOPO4 (PPKTP), periodically poled LiNbO3 (PPLN), and periodically poled LiTaO3 (PPLT), and the NOPA gain properties of the three crystals are compared. Broad gain bandwidth exists above 85 nm at a signal wavelength of 800 nm with a 532 nm pump pulse, with proper noncollinear angle and grating period at a fixed temperature for GVM. Deviation from the group-velocity-matched noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. Moreover, there is a large capability of crystal angle tuning.
Resumo:
We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.
Resumo:
We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.
Resumo:
The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
High-quality 2at%-doped Yb:CaF2 and Yb,Na:CaF2 single crystals with diameter of 76mm were grown by the temperature gradient technique. For the first time, distribution coefficients (KO) of Yb in the two crystals were determined to be 1.07 and 0.91, respectively, by measuring the Yb concentrations at the growth starting position in the as-grown boules. Absorption and emission spectra of the two different crystals were measured at room temperature. Experimental results show that Na+ ions codoping with Yb3+ as charge compensators make Yb3+ ions in CaF2 lattice to be a quasi-single-center system, and greatly suppress the deoxidization of Yb3+ to Yb2+ (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.
Resumo:
Single crystal of butyl branched polyethylene with various molecular weight formed from the melt in the presence of electric field was studied. It was found that electric field influenced morphology and structure of the butyl branched polyethylene single crystals formed. The lateral habits of the single crystals were circular shape, which was different from truncated lozenge or lenticular shape single crystals formed from the melt in the absence of electric field. The stems in the single crystals formed in the presence Of electric field were perpendicular to the basal plane of the single crystals, which was different from chain tilting in single crystals formed from the melt in the absence of electric field. The electron diffraction patterns showed that the structure of the circular single crystals was a quasi-hexagonal with looser chain packing. This looser chain packing was favorable to thickening growth of single crystals through chain sliding diffusion. The thickness of the single crystals was much larger and depended on molecular weight. It indicated that the single crystal in the presence of electric field should be an extended chain type Single crystal.
Resumo:
Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.
Resumo:
Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.
Resumo:
Bulk single crystals b-FeSi2, as a new photoelectric and thermoelectric material, has been successfully grown using chemical vapor transport technique by using iodine as transport agent in a sealed ampoule. The effects of crystal growth condition on quality and morphologies of the single crystals were studied. Both needle-like and grain-like single crystals were gained. By changing substrate temperature, tetrahedral high quality a-FeSi2 single crystals were also obtained.
Resumo:
A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.