113 resultados para Porous


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-layers feedforward neural network is used for inversion of material constants of fluid-saturated porous media. The direct analysis of fluid-saturated porous media is carried out with the boundary element method. The dynamic displacement responses obtained from direct analysis for prescribed material parameters constitute the sample sets training neural network. By virtue of the effective L-M training algorithm and the Tikhonov regularization method as well as the GCV method for an appropriate selection of regularization parameter, the inverse mapping from dynamic displacement responses to material constants is performed. Numerical examples demonstrate the validity of the neural network method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanism of wave-seabed interaction has been extensively studied by coastal geotechnical engineers in recent years. Numerous poro-elastic models have been proposed to investigate the mechanism of wave propagation on a seabed in the past. The existing poro-elastic models include drained model, consolidation model, Coulomb-damping model, and full dynamic model. However, to date, the difference between the existing models is unclear. In this paper, the fully dynamic poro-elastic model for the wave-seabed interaction will be derived first. Then, the existing models will be reduced from the proposed fully dynamic model. Based on the numerical comparisons, the applicable range of each model is also clarified for the engineering practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two mechanisms for the wave-induced pore pressures in a porous seabed, i.e. oscillatory and residual excess pore pressures, have been observed in laboratory experiments and field measurements. Most previous investigations have focused on one of the mechanisms individually. In this paper, an analytical solution for the wave-induced residual pore pressure, which is not available yet, is derived, and compared with the existing experimental data. With the new solution, a parametric analysis is performed to clarify the applicable ranges of two mechanisms. Then, a simplified approximation for the prediction of wave-induced liquefaction potential is proposed for engineering practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permeability of the fractal porous media is simulated by Monte Carlo technique in this work. Based oil the fractal character of pore size distribution in porous media, the probability models for pore diameter and for permeability are derived. Taking the bi-dispersed fractal porous media as examples, the permeability calculations are performed by the present Monte Carlo method. The results show that the present simulations present a good agreement compared with the existing fractal analytical solution in the general interested porosity range. The proposed simulation method may have the potential in prediction of other transport properties (such as thermal conductivity, dispersion conductivity and electrical conductivity) in fractal porous media, both saturated and unsaturated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling mechanism of Rayleigh effect and Marangoni effect in a liquid-porous system is investigated using a linear stability analysis. The eigenvalue problem is solved by means of a Chebyshev tau method. Results indicate that there are three coupling modes between the Rayleigh effect and the Marangoni effect for different depth ratios. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instability of Poiseuille flow in a fluid-porous system is investigated. The system consists of a fluid layer overlying porous media and is subjected to a horizontal plane Poiseuille flow. We use Brinkman's model instead of Darcy's law to describe the porous layer. The eigenvalue problem is solved by means of a Chebyshev collocation method. We study the influence of the depth ratio (d) over cap and the Darcy number delta on the instability of the system. We compare systematically the instability of Brinkman's model with the results of Darcy's model. Our results show that no satisfactory agreement between Brinkman's model and Darcy's model is obtained for the instability of a fluid-porous system. We also examine the instability of Darcy's model. A particular comparison with early work is made. We find that a multivalued region may present in the (k, Re) plane, which was neglected in previous work. Here k is the dimensionless wavenumber and Re is the Reynolds number. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000643]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, cooperative self-assembly (CSA) of colloidal spheres with different sizes was studied. It was found that a complicated jamming effect makes it difficult to achieve an optimal self-assembling condition for construction of a well-ordered stacking of colloidal spheres in a relatively short growth time by CSA. Through the use of a characteristic infrared (IR) technique to significantly accelerate local evaporation on the growing interface without changing the bulk growing environment, a concise three-parameter (temperature, pressure, and IR intensity) CSA method to effectively overcome the jamming effect has been developed. Mono- and multiscale inverse opals in a large range of lattice scales can be prepared within a growth time (15-30 min) that is remarkably shorter than the growth times of several hours for previous methods. Scanning electron microscopy images and transmittance spectra demonstrated the superior crystalline and optical qualities of the resulting materials. More importantly, the new method enables optimal conditions for CSA without limitations on sizes and materials of multiple colloids. This strategy not only makes a meaningful advance in the applicability and universality of colloidal crystals and ordered porous materials but also can be an inspiration to the self-assembly systems widely used in many other fields, such as nanotechnology and molecular bioengineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macrostructure can be changed by changing the morphology of its units. In this article, we use a colloidal template route, combined with hydrothermal growth method, to get the hexagonally arrayed ZnO nanorods on the polycrystalline ZnO substrate. More significantly, through controlling the morphology of ZnO crystals by adding structure-directing agent in the precursor solution, the highly ordered porous ZnO films were obtained instead of ZnO nanorods. This templated solvent-thermal method has great potential in micro/nano-fabrication. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model consisting of an inhomogeneous porous medium saturated by incompressible fluid is investigated. We focus on the effects of inhomogeneity for the streamline patterns and instabilities of the system. Influences of the 'mean porosity' and gradient of distributions of porosity are also emphasized. The results cannot be obtained by studying the media with constant porosity as carried out by other researchers, and have not been discussed before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized model for the effective thermal conductivity of porous media is derived based on the fact that statistical self-similarity exists in porous media. The proposed model assumes that porous media consist of two portions: randomly distributed non-touching particles and self-similarly distributed particles contacting each other with resistance. The latter are simulated by Sierpinski carpets with side length L = 13 and cutout size C = 3, 5, 7 and 9, respectively, depending upon the porosity concerned. Recursive formulae are presented and expressed as a function of porosity, ratio of areas, ratio of component thermal conductivities and contact resistance, and there is no empirical constant and every parameter has a clear physical meaning. The model predictions are compared with the existing experimental data, and good agreement is found in a wide range of porosity of 0.14-0.80, and this verifies the validity of the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple geometry model for tortuosity of flow path in porous media is proposed based on the assumption that some particles in a porous medium are unrestrictedly overlapped and the others are not. The proposed model is expressed as a function of porosity and there is no empirical constant in this model. The model predictions are compared with those from available correlations obtained numerically and experimentally, both of which are in agreement with each other. The present model can also give the tortuosity with a good approximation near the percolation threshold. The validity of the present tortuosity model is thus verified.