143 resultados para Population
Resumo:
We analyse the physical origin of population inversion via continuous wave two-colour coherent excitation in three-level systems by dressing the inverted transition. Two different mechanisms are identified as being responsible for the population inversion. For V-configured systems and cascade (E) configured systems with inversion on the lower transition, the responsible mechanism is the selective trapping of dressed states, and the population inversion approaches the ideal value of 1. For Lambda-configured systems and Xi-configured systems with inversion on the upper transition, population inversion is based on the selective excitation of dressed states, with the population inversion tending towards 0.5. As the essential difference between these two mechanisms, the selective trapping of dressed states occurs in systems with strong decay into dressed states while the selective excitation appears in systems with strong decay out of dressed states.
Resumo:
The behavior of population transfer in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.
Resumo:
Sideband manipulation of population inversion in a three-level A atomic configuration is investigated theoretically. Compared with the case of a nearly monochromatic field, a population inversion between an excited state and a ground state has been found in a wide sideband intensity range by increasing the difference in frequency between three components. Furthermore, the population inversion can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field with respective to the phase of the central component. Changing the sum phase from 0 to pi, the population inversion between the excited state and the ground state can increase within nearly half of the sideband intensity range. At the same time, the sideband intensity range that corresponds to the system exhibiting inversion rho(00) > rho 11 also becomes wider evidently.
Resumo:
We demonstrate an ultrafast transient, ring-shaped population grating induced by an ultrashort hollow Gaussian laser bullet by solving the three-dimensional full-wave Maxwell-Bloch equations. Through adjusting the beam waist and the area of the pulse, we can control the number of lines and the period of the grating. Based on this coherent control scheme, a door to produce gratings with complex transverse structure is opened.
Resumo:
Coherent population accumulations of multiphoton transitions induced by an ultrashort pulse train in a two-level polar molecule are investigated theoretically by solving the density-matrix equations without invoking any of the standard approximations. It is shown due to the effects of permanent dipole moments, that the population accumulation of multiphoton transitions can be obtained in the polar molecule. Moreover, the population accumulations depend crucially on the relative phase between two sequential pulses, and the period in which the maximum population accumulation occurs is 2 pi/N in N-photon transitions.
Resumo:
An ultrafast transient population grating induced by a (1+1)-dimensional, ultrashort dipole soliton is demonstrated by solving the full-wave Maxwell-Bloch equations. The number of lines and the period of the grating can be controlled by the beam waist and the area of the pulse. Of interest is that a polarization grating is produced. A coherent control scheme based on these phenomena can be contemplated as ultrafast transient grating techniques.
Resumo:
We investigate the fluorescence spectrum in a nearly degenerate atomic system of a F-e = 0 -> F-g = 1 transition by analytically solving Schrodinger equations. An ultranarrow fluorescence spectral line in between the two coherent population trapping windows has been found. Our analytic solutions clearly show the origin of the ultranarrow spectral line. Due to quantum interference effects between two coherent population trapping states, the width and intensity of the central spectral line can be controlled by an external magnetic field. Such an effect may be used to detect a magnetic field.
Resumo:
We measure the signal amplitude and linewidth of a dark line in coherent population trapping in the Rb vapour cell filled with mixed buffer gas N-2 and Ar as a function of cell temperature. We find that the dark line signal amplitude increases with temperature up to a maximum at 49 degrees C and then drops at higher temperatures due to quenching effects of N-2. The linewidth of the dark line remains basically constant, at 1080 Hz. We also measure the linewidth of the dark line as a function of laser intensity. The linewidth increases linearly with laser intensity. An intrinsic linewidth (FWHM=896 Hz at 3.4 GHz) of the Rb cell is obtained.