189 resultados para Polymeric chain
Resumo:
A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)(2)Ir(acac) (bis(2,4-diphenylquinolyl-N,C-2') iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Forster energy transfer from the PF main chain to (PPQ)(2)Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex I incorporated into the polymers is as low as 1 mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0 cd A(-1) with a luminance of 2000 cd m(-2) and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes.
Resumo:
Four novel polymeric lanthanide(III) complexes of two new double betaine derivatives have been synthesized and structurally determined. In [{La-2(L-1)(2)(H2O)(9)}(n)]Cl-6n. 2nH(2)O (1) and [{Tb(L-1)(H2O)(4)}(n)]Cl-3n. nH(2)O (2) (L-1 =4,4'-trimethylenedipyridinio-N,N'-diacetate), the lanthanide(III) ions form a two-dimensional layer in which each pair of lanthanide(III) ions is bridged by two syn-anti mu-carboxylato-O,O' groups. Adjacent layers are cross-linked through hydrogen bonds among aqua ligands, lattice water molecules and chloride ions, to form a three-dimensional network. Isomorphous [{Ln(L-1)(H2O)(4)}(n)]Cl-3n. 5nH(2)O (Ln=La, 3; Ln=Tb, 4; L-2=1,3 bis(pyridinio-4-carboxylato)-propane) each contain a centrosymmetric paddle-wheel-like dimeric unit in which each pair of adjacent metal atoms is bridged by four syn-syn mu-carboxylato-O,O' groups that are oriented nearly perpendicular to each other about the metal-metal axis. Neighboring dimeric subunits are bridged by a pair of flexible LL ligands into a polymeric chain. Adjacent chains are inter-linked by hydrogen bonds among aqua ligands, lattice water molecules and chloride ions into a three-dimensional network. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A new polyoxotungstate complex [Na-2(H2O)(8)][Na-8(H2O)(20)][Cu(en)(2)][W12O42] center dot 3 H2O (1) (en = ethylenediamine) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy and TG analysis, together with a single crystal X-ray diffraction study. In compound 1, the Cu(en)(2)(2+) complex cation links the [W12O42](12-) anions to form a I D chain, and the ID chains are further interconnected with Na-8(H2O)(20)(8+) and Na-2(H2O)(8)(2+) cations to construct a new 3D framework.
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
Deuterated polyethylene tracer molecules with small amount of branches (12 C2H5- branches per 1000 backbone carbon atoms) were blended with a hydrogenated polyethylene matrix to form a homogenous mixture. The conformational evolution of the deuterated chains in a stretched semi-cry stall me film was observed via online small angle neutron scattering measurements during annealing at high temperatures close to the melting point. Because the sample was annealed at a temperature closely below its melting point, the crystalline lamellae were only partially molten and the system could not fully relax. The global chain dimensions were preserved during annealing. Recrystallization of released polymeric chain segments allows for local phase separation thus driving the deuterated chain segments into the confining interlamellar amorphous layers giving rise to an interesting intra-molecular clustering effect of the long deuterated chain. This clustering is deduced from characteristic small angle neutron scattering patterns. The confined phase separation has its origin in primarily the small amount of the branches on the deuterated polymers which impede the crystallization of the deuterated chain segments.
Resumo:
The thermal influence on the electrical conductivity of polyimide film surfaces induced by KrF-laser irradiation was investigated, The formation of conducting phases was demonstrated to be highly temperature sensitive, as evidenced by strong dependence of the electrical conductivity on repetition rate and ambient temperature. XPS and Raman studies showed that the efficiency of the formation of conducting phases could be enhanced by the increase of temperature on irradiated polyimide film surfaces. After the disruption of polymeric chain, the carbon-enriched clusters remained on the irradiated polyimide film surfaces organized into polycrystalline graphite-like clusters responsible for electrical conductivity. The resulting dangling bonds from the decomposition process of polyimide acted as centers for the rearrangement of carbon-enriched clusters. It is suggested that the motion of radicals was promoted with increasing the temperature. Therefore the formation of polycrystalline graphite-like clusters benefited from high remaining temperature on the irradiated polyimide film surfaces. These results revealed that thermal influence played a dominant role on the formation of conducting phases.
Resumo:
In the structure of catena-poly[{triaqua(L-pro-line-O)erbium(III)}-bis-mu-(L-proline-O:O')-{triaqua-(L-proline-O)erbium(III)}-bis-mu-(L-proline-O:O') hexaperchlorate], each Er3+ ion is coordinated by five carboxyl O atoms from the L-proline molecules and three water molecules. Four of the SiX L-proline molecules act as bidentate bridging ligands to link the Er3+ ions through the carboxyl groups, thus producing a one-dimensional chain structure. The other two ligands coordinate unidentately to the rare-earth ions. Hydrogen bonds formed between the coordinated water molecules and between the water and unidentate proline ligand stabilize the polymeric chain.
Resumo:
The immunoglobulin (Ig) joining (J) chain plays an important role in the formation of polymeric Igs and their transport into secretions. In the present study, the cDNA sequence of J chain has been cloned from the Chinese soft-shelled turtle (Pelodiscus sinensis) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The cDNA sequence is 2347 bp in length and contains an open reading frame of 480 bp encoding 160 aa including the signal sequence. The deduced amino acid sequence has a high degree of homology with that of an already reported turtle J chain (80.7%), and of chicken (71.3%). By using real-time quantitative RT-PCR analysis, a significant up-regulation of J-chain transcripts was observed in spleen, kidney and blood of turtles injected with inactivated Aeromonas hydrophila, indicating the immune role of J chain in response to bacterial infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new methodology is described for the one-step aqueous preparation of highly monodisperse gold nanoparticles with diameters below 5 nm using thioether- and thiol-functionalized polymer ligands. The particle size and size distribution was controlled by subtle variation of the polymer structure. It was shown that poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were the most effective stabilizing polymers in the group studied and that relatively low molar mass ligands (similar to 2500 g/mol) gave rise to the narrowest particle size distributions. Particle uniformity and colloidal stability to changes in ionic strength and pH were strongly affected by the hydrophobicity of the ligand end group. "Multidentate" thiol-terminated ligands were produced by employing dithiols and tetrathiols as chain-transfer agents, and these ligands gave rise to particles with unprecedented control over particle size and enhanced colloidal stability. It was found throughout that dynamic light scattering (DLS) is a very useful corroboratory technique for characterization of these gold nanoparticles in addition to optical spectroscopy and TEM.
Resumo:
An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5).0.5H(2)O (1) and (TMP)(2)(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic 'anion bridge I', C(2)-H..X...pyrimidinium (X = Br in 1 and 1 in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The 'anion bridge II' of the type N(4'1)-H...X...thiazolium (X = phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.
Resumo:
A monomer, 2,3,6,7,10,11-hexakispentyloxy triphenylene (HPT) possesses a triphenylene core as a discotic mesogen. Polymers containing this discotic mesogen have been studied using wide-angle X-ray and electron diffraction. HPT is known to show a discotic liquid crystal phase, noted as D-ho (h for hexagonal bidimensional lattice, o for ordered molecular spacing in each column). In this paper, however, HPT Liquid crystalline phases, heated up from the crystalline state and cooled down from the isotropic state, were characterized in the diameter dimensions. In addition. the diameters of the columns are close to a parameter of two separate crystals. A core orientation was, therefore, proposed in the mesophase obtained by heating the crystalline. In order to distinguish these differences, the D-ho phase was divided to include the D-hcd and D-hco phases. Molecular modeling was performed to help our understanding of the orientation. The D-hcd and D-hco phases were used to characterize the phases of the discotic polymeric analogs by comparing their column diameters to those of the monomers. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A novel polymeric Pr(III) complex with a new double betaine, namely [{Pr(L-1)(1.5)(H2O)(2)}(n)] [ClOli4]3(n). nH(2)O (1) (L-1= 1,4-diazoniobicyclo[2,2,2]octane- 1,4-dipropionate), has been synthesized and characterized by X-ray analysis. In the title complex, the Pr(III) atom is nine-coordinated by seven oxygen atoms from five L-1 ligands and two aqua ligands. Each pair of adjacent praseodymium(III) atoms is linked by a pair of mu(3) chelating and bridging carboxylate groups, thus forming an infinite metal metal chain running parallel to the a direction, and such chains are cross-linked by flexible backbones of L-1 ligands into a three-dimensional network with the perchlorate anions and lattice water molecules accommodated in the interstitial space. The title complex crystallizes in the monoclinic space group P2(1)/n with a = 8.085(2), b = 14.316(3), c = 29.775(6) Angstrom, beta = 103.04(3)degrees and Z = 4.
Resumo:
[La(NO3)(3)(OH2)(2)(phen)]. 15-crown-5 is hexagonal, P6(5), with a = 10.955(2), c = 43.769(9) Angstrom, and D-calc = 1.668 g cm(-3) for Z = 6. In the complex, two nitrogen atoms (from phen) and eight oxygen atoms (six from three bidentate nitrate anions and two from water molecules) are coordinated to the central La(III) ion, forming a coordination polyhedron which is approximately a bicapped square antiprism. The coordinated water molecules donate hydrogen bonds to the oxygen atoms of the crown ether, forming polymeric hydrogen bonded chains which wrap helically along the unit cell direction c.
Resumo:
SAPO-11 molecular sieves were synthesized from nonaqueous media. The effects of Si and Al sources as well as solvents on the catalytic performance of SAPO-11 were investigated by the hydroisomerization reaction of n-dodecane. The samples were characterized by XRD, XRF, N-2-adsorption, SEM, NH3-TPD, IR-NH3 and Si-29 CP MAS NMR. The SAPO-11 samples synthesized with tetraethoxysilane as the Si source showed higher Si incorporation contents than the SAPO molecular sieves prepared with polymeric Si sources (fumed silica and Si colloidal gel). The reaction results showed that Pt/SAPO-11 catalysts synthesized from ethylene glycol and glycerol media with the monomeric Si and Al sources (tetraethoxysilane, aluminum isopropoxide) exhibited higher catalytic activities than those catalysts with the polymeric Si or Al (pseudo-boehmite) sources, due to the larger external surface area and higher acidity of the former ones. Especially, the catalyst synthesized in an ethylene glycol medium possessed the highest catalytic activity. Over this catalyst, 88% conversion of n-dodecane was achieved at a low temperature of 250 degrees C.
Resumo:
An intended numerical investigation is carried out. The results indicate that, even if a perfect adhesive bond is preserved between the particles and matrix materials, the two-phase element cell model is unable to predict the strength increment of the particulate polymeric composites (PPC). To explore the main reinforcing mechanism, additional microscopic experiment is performed. An ''influence zone'' was observed around each particle which is measured about 2 to 10 micrometers in thickness for a glass-polyethylene mixture. Then, an improved computational model is presented to include the ''influence zone'' effect and several mechanical behaviors of PPC are well simulated through this new model.