89 resultados para Planar auto-calibration
Resumo:
A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.
Resumo:
A material model, whose framework is parallel spring-bundles oriented in 3-D space, is proposed. Based on a discussion of the discrete schemes and optimum discretization of the solid angles, a 3-D network cell consisted of one-dimensional components is developed with its geometrical and physical parameters calibrated. It is proved that the 3-D network model is able to exactly simulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the previous models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A simplified model is also proposed to realize high computation accuracy within low computation cost. Examples demonstrate that the 3-D network model has particular superiority in the simulation of short-fiber reinforced composites.
Resumo:
Generalized planar fault energy (GPFE) curves have been used to predict partial-dislocation-mediated processes in nanocrystalline materials, but their validity has not been evaluated experimentally. We report experimental observations of a large quantity of both stacking faults and twins in nc Ni deformed at relatively low stresses in a tensile test. The experimental findings indicate that the GPFE curves can reasonably explain the formation of stacking faults, but they alone were not able to adequately predict the propensity of deformation twinning.
Resumo:
A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary configuration in microgravity environment under the assumption that the surface tension is high enough to keep the bubbles spherical. The two bubbles are dr
A new expression of hardening coefficients for fcc-crystal and calibration of the material constants
Resumo:
In order to describe the effect of latent hardening on the macro-plastic behavior of foc-crystal, a new expression for hardening coefficient is proposed in which there are 12 material constants, each having clear physical meaning. And a method of material constant calibration is suggested and used to determine the material constants of copper and aluminum crystal. The simulated load-elongation curves along various crystallographic orientations are comparable with the experimental ones.
Resumo:
An auto-focusing method based on the image brightness gradient sharpness function is presented for imaging ellipsometry system, in which the image plane of the thin-film specimen is not perpendicular to the optical axis. The clear image of a specimen with large area is obtained by moving the imaging sensor in optical axis direction and around its sensitive surface centre successively. The experimental results demonstrate its feasibility.
Resumo:
可压平面混合层是包含复杂多时空尺度运动的非定常流体力学部问题,具有深刻的理论意义和广泛的应用背景。针对该问题所涉及内容的多面性,本文的目的是,基于高精度、高分辨率数值算法的构造、发展和数值行为分析,采用线性稳定性分析和直接数值模拟方法。从理论和计算两方面集中研究压缩性效应、粘性效应、初值效应以及燃烧反应放热效应等对可压平面混合层早期稳定性行为和大尺度拟序涡结构非线性演化的影响。以混合层已有研究成果的分析和综述为开端,论文主体共包括四部分:第一部分是可压平面混合层时间/空间模式数值线性稳定性分析。实现了高精度对称紧致差分格式(SCD)对可压粘性扰动线性稳定性边值问题的求解,对导出的线性和非线性离散特征值问题,提出了两个高效局部解法。研究涉及二维/三维扰动波、无粘/粘性扰动波、特征函数和特征值谱、第一/第二模态、超声速快/慢模态、速度比和密度比等。验证了对流Mach数Mc为一个合理的压缩性参数。指出压缩性效应和粘性效应对最不稳定扰动波的波数(频率)和增长率呈相拟的抑制作用,且时间模式稳定性分析结果在许多方面是可信的。从随机和线性扰动场出发,采用高精度五阶迎风紧致和六阶对称紧致混合差分算法(UCD5/SCD6)对可压平面混合层的稳定性特征进行了直接数值模拟,揭示了初始主导线性扰动与一些实际涡结构非线性作用形态间的内在关联,印证了线性稳定性分析方法的合理性和有效性。第二部分是高精度迎风紧致差分格式(UCD)时空全离散数值行为分析。导出了其一维/二维一般色散表达式。研究表明,UCD格式在高波数区具有内在的全离散耗散和色散特性;其数值群速度的快/慢特征可因CFL数不同而改变;在稳定CFL数下简单附加人工粘性可强化UCD格式在高波数区的耗散量;提高时间精度可放宽稳定CFL数限制;UCD格式的二维全离散色散介质中存在三个不同性质的数值波,其全离散稳定性由数值声波主控。第三部分实现了高精度UCD5/SCD6差分算法对空间发展可压平面混合层的直接数值模拟。通过亚谐扰动波的个数和扰动频率的控制,捕捉到了基频涡的饱和、一次和二次对并等现象,显示了大尺度涡结构与入中初始扰动方式之间的内在联系。利用参数Mc观察了压缩性效应对大尺度涡空间演化及其相互作用的影响。第四部分实现了高精度UCD5/SCD6差分算法对非预混扩散火焰化学反应平面混合层的直接数值模拟。研究指出,放热效应可抑制和延迟涡的形成,使基频涡卷拉伸甚至丧失,混合层Reynolds 应力ρu'v'和流向速度波动关联项u'v'下降,以致涡结构与外流动量交换和标量输运减少,脉动输运能力被削弱,从而混合效率、产物生成率和混合层增长率下降,放热主要通过膨胀效应和斜压效应来抑制大尺度涡的演化。
Resumo:
Excimer laser ablation technique was introduced into this work to fabricate a passive planar micromixer on the PMMA substrate. T-junction shaped and width-changed S-shaped microchannels were both designed in this micromixer to enhance mixing effect. The mixing experiment of distilled water and Rhodamine B with injection flow rate of 500 and 1,500 mu m/s validates the mixing effectivity of this micromixer, and indicates the feasibility of excimer laser ablation in the microfabrication of mu-TAS device.
Resumo:
We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.
Resumo:
We investigate a planar ion chip design with a two-dimensional array of linear ion traps for the scalable quantum information processor. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate, a combination of appropriate rf and DC potentials are applied to them for stable ion confinement, and the trap axes are located above the surface at a distance controlled by the electrodes' lateral extent and the substrate's height as discussed. The potential distributions are calculated using static electric field qualitatively. This architecture is conceptually simple and many current microfabrication techniques are feasible for the basic structure. It may provide a promising route for scalable quantum computers.
Resumo:
The photorefractive planar lens for converting a vertical incident plane wave to a lateral-spread spherical wave and vice versa, is suggested. Using the two-beam coupled-wave theory, the coupled wave equations are derived and their half-analytical solutions are also given in terms of an infinite series. The diffraction properties (beam profiles, diffraction efficiency) of the local volume grating in the lens are presented. And the focusing property of the lens is discussed and compared with that of an ideal convergent spherical wave. It is demonstrated that the suggested photorefractive planar lens shows a good focusing effect. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
A novel phase-step calibration technique is presented on the basis of a two-run-times-two-frame phase-shift method. First the symmetry factor M is defined to describe the distribution property of the distorted phase due to phase-shifter miscalibration; then the phase-step calibration technique, in which two sets of two interferograms with a straight fringe pattern are recorded and the phase step is obtained by calculating M of the wrapped phase map, is developed. With this technique, a good mirror is required, but no uniform illumination is needed and no complex mathematical operation is involved. This technique can be carried out in situ and is applicable to any phase shifter, whether linear or nonlinear. (c) 2006 Optical Society of America.