69 resultados para Phase-space
Resumo:
The ambiguity function was employed as a merit function to design an optical system with a high depth of focus. The ambiguity function with the desired enlarged-depth-of-focus characteristics was obtained by using a properly designed joint filter to modify the ambiguity function of the original pupil in the phase-space domain. From the viewpoint of the filter theory, we roughly propose that the constraints of the spatial filters that are used to enlarge the focal depth must be satisfied. These constraints coincide with those that appeared in the previous literature on this topic. Following our design procedure, several sets of apodizers were synthesized, and their performances in the defocused imagery were compared with each other and with other previous designs. (c) 2005 Optical Society of America.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
A new phase of monoclinic BaTb2Mn2O7 with extra superlattice lines in addition to the usual orthorhombic X-ray diffraction patterns was prepared and a Rietveld refinement was applied to analyze the crystal structure using X-ray powder diffraction data at room temperature. The refined lattice parameters were a = 0.54918(8) nm, b = 2.0149(5) nm, c = 0.54922(9) nm, and beta = 90.62degrees with the space group A2/m (no. 12). The MnO6 oxygen octahedron has distortion and tilts around a-axis by about 7degrees each other in the reverse direction.
Resumo:
In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).
Resumo:
In this paper, a method to construct topological template in terms of symbolic dynamics for the diamagnetic Kepler problem is proposed. To confirm the topological template, rotation numbers of invariant manifolds around unstable periodic orbits in a phase space are taken as an object of comparison. The rotation numbers are determined from the definition and connected with symbolic sequences encoding the periodic orbits in a reduced Poincare section. Only symbolic codes with inverse ordering in the forward mapping can contribute to the rotation of invariant manifolds around the periodic orbits. By using symbolic ordering, the reduced Poincare section is constricted along stable manifolds and a topological template, which preserves the ordering of forward sequences and can be used to extract the rotation numbers, is established. The rotation numbers computed from the topological template are the same as those computed from their original definition.
Resumo:
Characteristic burtsing behavior is observed in a driven, two-dimensional viscous flow, confined to a square domain and subject to no-slip boundaries. Passing a critical parameter value, an existing chaotic attractor undergoes a crisis, after which the flow initially enters a transient bursting regime. Bursting is caused by ejections from and return to a limited subdomain of the phase space, whereas the precrisis chaotic set forms the asymptotic attractor of the flow. For increasing values of the control parameter the length of the bursting regime increases progressively. Passing another critical parameter value, a second crisis leads to the appearance of a secondary type of bursting, of very large dynamical range. Within the bursting regime the flow then switches in irregular intervals from the primary to the secondary type of bursting. Peak enstrophy levels for both types of bursting are associated to the collapse of a primary vortex into a quadrupolar state.
Resumo:
A new statistical formulation and a relevant experimental approach to determine the growth rate of microcracks were proposed. The method consists of experimental measurements and a statistical analysis' on the basis of the conservation law of number density of microcracks in phase space. As a practical example of the method, the growth rate of microcracks appearing in an aluminium alloy subjected to planar impact loading was determined to be ca. 10 mu m/mu s under a tensile stress of 1470 MPa and load duration between 0.26 mu s and 0.80 mu s.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.
Resumo:
The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.
Resumo:
This is the first part of direct numerical simulation (DNS) of double-diffusive convection in a slim rectangular enclosure with horizontal temperature and concentration gradients. We consider the case with the thermal Rayleigh number of 10^5, the Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to temperature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th order upwind compact scheme was developed for approximation of convective terms, and a three-stage third-order Runge-Kutta method was employed for time advancement. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow of transition is a complex series changing fromthe steady to periodic, chaotic, periodic, quasi-periodic, and finally back to periodic. There are two types of periodic flow, one is simple periodic flow with single fundamental frequency (FF), and another is complex periodic flow with multiple FFs. This process is illustrated by using time-velocity histories, Fourier frequency spectrum analysis and the phase-space rajectories.
Resumo:
In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.