168 resultados para Percutaneous-absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "interaction effect" between aluminum foam and metal column that takes place when foam-filled hat sections (top-hats and double-hats) are axially crushed was investigated in this paper. Based on experimental examination, numerical simulation and analytical models, a systemic approach was developed to partition the energy absorption quantitatively into the foam filler component and the hat section component, and the relative contribution of each component to the overall interaction effect was therefore evaluated. Careful observation of the collapse profile found that the crushed foam filler could be further divided into two main energy-dissipation regions: densified region and extremely densified region. The volume reduction and volumetric strain of each region were empirically estimated. An analytical model pertinent to the collapse profile was thereafter proposed to find the more precise relationship between the volume reduction and volumetric strain of the foam filler. Combined the superfolding element model for hat sections with the current model according to the coupled method, each component energy absorption was subsequently derived, and the influence of some controlling factors was discussed. According to the finite element analysis and the theoretical modeling, when filled with foam, energy absorption was found to be increased both in the hat section and the foam filler, whereas the latter contributes predominantly to the interaction effect. The formation of the extremely densified region in the foam filler accounts for this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用热弹性理论分析了在光学材料中由于缺陷吸收激光能量引起的温度和热应力分布,并且针对一个简单的裂纹模型分析了热应力产生的应力强度因子,给出了一些主要参数对于应力强度因子的影响的规律。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction effect, i.e., the contribution of each component to the total energy absorption of an axially crushed foam-filled hat section was investigated quantitatively via numerical simulation. The FE results were first verified by experimental work of aluminum foam-filled top-hat and double-hat sections, then the contribution of foam-fillers and that of hat sections to the overall energy absorption were quantitatively obtained, respectively. When foam-filled, increase in energy absorption was found both in hat section component and foam-filler component, whereas the latter contributes predominantly to the interaction effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction. Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters. Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption. The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range. Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU). The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effects of spontaneously induced coherence on absorption properties in a nearly equispaced three-level ladder-type system driven by two coherent fields. It find that the absorption properties of this system with the probe field applied on the lower transition can be significantly modified if this coherence is optimized. In the case of small spontaneous decay rate in the upper excited state, it finds that such coherence does not destroy the electromagnetically induced transparency (EIT). Nevertheless, the absorption peak on both sides of zero detuning and the linewidth of absorption line become larger and narrower than those in the case corresponding to the effects of spontaneously induced coherence; while in the case of large decay rate, it finds that, instead of EIT with low resonant absorption, a sharp absorption peak at resonance appears. That is, electromagnetically induced absorption in the nearly equispaced ladder-type system can occur due to such coherent effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that in a closed equispaced three-level ladder system, by controlling the relative phase of two applied coherent fields, the conversion from absorption with inversion to lasing without inversion (LWI) can be realized; a large index of the refraction with zero absorption can be gotten; considerable increasing of the spectrum region and value of the LWI gain can be achieved. Our study also reveals that the incoherent pumping will produce a remarkable effect oil the phase-dependent properties of the system. Modifying value of the incoherent pumping can change the property of the system from absorption to amplification and enhance significantly LWI gain. If the incoherent pumping is absent, we cannot get any gain for any value of the relative phase. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+ :Y2SiO5 crystal with 120 fs, 800 mn infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d -> 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances, the giant-enhanced Kerr nonlinearity can be achieved within the right transparency window. The in fluence of Doppler broadening is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the saturated diffraction efficiency has been optimized by considering the effect of the absorption of the recording light on a crossed-beam grating with 90 degrees recording geometry in Fe:LiNbO3 crystals. The dependence of saturated diffraction efficiency on the doping levels with a known oxidation-reduction state, as well as the dependence of saturated diffraction efficiency on oxidation-reduction state with known doping levels, has been investigated. Two competing effects on the saturated diffraction efficiency were discussed, and the intensity profile of the diffracted beam at the output boundary has also been investigated. The results show that the maximal saturated diffraction efficiency can be obtained in crystals with moderate doping levels and modest oxidation state. An experimental verification is performed and the results are consistent with those of the theoretical calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption characteristic of lithium niobate crystals doped with chromium and copper (Cr and Cu) is investigated. We find that there are two apparent absorption bands for LiNbO3:Cr:Cu crystal doped with 0.14 wt.% Cr2O3 and 0.011 wt.% CuO; one is around 480 nm, and the other is around 660 nm. With a decrease in the doping composition of Cr and an increase in the doping composition of Cu, no apparent absorption band in the shorter wavelength range exists. The higher the doping level of Cr, the larger the absorbance around 660 nm. Although a 633 nm red light is located in the absorption band around 660 nm, the absorption at 633 nm does not help the photorefractive process; i.e., unlike other doubly doped crystals, for example, LiNbO3:Fe:Mn crystal, a nonvolatile holographic recording can be realized by a 633 nm red light as the recording light and a 390 nm UV light as the sensitizing light. For LiNbO3:Cr:Cu crystals, by changing the recording light from a 633 nm red light to a 514 nm green light, sensitizing with a 390 nm UV light and a 488 nm blue light, respectively, a nonvolatile holographic recording can be realized. Doping the appropriate Cr (for example, N-Cr = 2.795 X 10(25)m(-3) and N-Cr/N-Cu = 1) benefits the improvement of holographic recording properties. (c) 2005 Optical Society of America.