89 resultados para Osmotic dehydration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical and numerical studies of secondary electro-osmotic flow EOF and its mixing in microchannels with heterogeneous zeta potentials are carried out in the present work. The secondary EOFs are analyzed by solving the Stokes equation with heterogeneous slip velocity boundary conditions. The analytical results obtained are compared with the direct numerical simulation of the Navier-Stokes equations. The secondary EOFs could transport scalar in larger areas and increase the scalar gradients, which significantly improve the mixing rate of scalars. It is shown that the heterogeneous zeta potentials could generate complex flow patterns and be used to enhance scalar mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TiO2-supported zeolite with core/shell heterostructure was fabricated by coating aluminosilicate zeolite (ASZ) on the TiO2 inoculating seed via in situ hydrothermal synthesis. The catalysts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen physisorption (BET), and Fourier transform infrared spectroscopy (FT-IR). The surface acidity of the catalysts was measured by pyridine-TPD method. The catalytic performance of the catalysts for ethanol dehydration to ethylene was also investigated. The results show that the TiO2-supported zeolite composite catalyst with core/shell heterostructure exhibits prominent conversion efficiency for ethanol dehydration to ethylene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2/4A zeolite composite catalysts were prepared by coating TiO2 on 4A zeolite via liquid phase deposition. The TiO 2/4A zeolite composite catalysts wtih higher surface weak acidity and lower mediate strong acidity exhibit much better catalytic performance on ethanol dehydration to ethylene compared with 4A zeolite. It is suggested that the TiO2 promoter could improve the effective Lewis acidity of composite catalyst which consequently enhanced the catalytic performance.