44 resultados para One-Way Function (OWF)
Resumo:
In this paper, a one-way NMOS analog switch featuring a low plug-in consumption is presented. The performances of analog switch, especially the performances of source follower are simulated under different conditions with PSPICE. Simulation results and factors affecting the deviation between input and output are analyzed, some advice on how to reduce the deviation between input and output is given. Ar the end of the paper, voltage relationship between input and output of the analog switch is obtained. Function of first degree, Vout = kVin + V0, is used to approximate the voltage relationship. The simulation results anti the value achieved from the approximation equation are given as well.
Resumo:
In order to study the differentiation of Asian colobines, 14 variables measured on 123 skulls, including Rhinopithecus, Presbytis, Presbytiscus (Rhinopithecus avunculus), Pygathrix and Nasalis were analyzed by one-way, cluster and discriminant function analyses. Information on paleoenvironmental changes in China and southeast Asia since the late Tertiary was used to examine the influences of migratory routes and range of distribution in Asian colobines. A cladogram for 6 genera of Asian colobines was constructed from the results of various analyses. Some new points or revisions were suggested: (1) Following one of two migratory routes, ancient species of Asian colobines perhaps passed through Xizang (Tibet) along the northern bank of the Tethys sea and through the Heng Duan Shan regions of Yunnan into Vietnam. An ancient landmass linking Yunnan and Xizang was already present on the east bank of the Tethys sea. Accordingly, Asian colobines would have two centers of evolutionary origin: Sundaland and the Heng Duan Shan regions of China. (2) Pygathrix shares more cranial features with Presbytiscus than with Rhinopithecus. This differs somewhat from the conclusion reached by Groves. (3) Nasalis (karyotype: 2n = 48) may be the most primitive genus among Asian colobines. Certain features shared with Rhinopithecus, e.g. large body size, terrestrial activity and limb proportions, can be interpreted as symple-siomorphic characters. (4) Rhinopithecus, with respect to craniofacial features, is a special case among Asian colobines. It combines a high degree of evolutionary specialization with retention of some primitive features thought to have been present in the ancestral Asian colobine.
Sonar gain control in echolocating finless porpoises (Neophocaena phocaenoides) in an open water (L)
Resumo:
Source levels of echolocating free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) were calculated using a range estimated by measuring the time delays of the signals via the surface and bottom reflection paths to the hydrophone, relative to the direct signal. Peak-to-peak source levels for finless porpoise were from 163.7 to 185.6 dB re:1 mu Pa. The source levels are highly range dependent and varied approximately as a function of the one-way transmission loss for signals traveling from the animals to the hydrophone. (c) 2006 Acoustical Society of America.
Resumo:
Rates of respiration and excretion of the Pacific oyster, Crassostrea gigas, were measured seasonally from June 2002 to July 2003 under ambient conditions of food, water temperature, pH, and salinity in Sanggou Bay, an important mariculture coast in north China. The aim of this study is to obtain fundamental data for further establishing an energy budget model and assessing the carrying capacity for cultivation of C. gigas in north China. Oysters were collected monthly or bimonthly from the integrated culture areas of bivalve and kelp in the bay. Oxygen consumption and ammonium and phosphorus excretion rates were measured, and ratios of O/N and NIP were calculated. One-way ANOVA was applied to determine differences among these parameters that act as a function of seasonal variation. All the physiological parameters yielded highly significant variations with season (P<0.01) The rate of respiration varied seasonally, with the highest oxygen consumption rate in July and the lowest rate in January, ranging from 0.07 to 2.13 mg O-2 h(-1) g(-1) dry tissue weight (DW). Maximum and minimum ammonium excretion rates were recorded in August and January, respectively, ranging from 0.51 to 5.40 mu mol NH4-N h(-1) g(-1) DW. Rates of phosphorus excretion varied from 0.11 (in January) to 0.64 (in July) mu mol PO4-P h(-1) g(-1) DW. The O/N and N/P ratios changed from 9.2 (in January) to 59.8 (in July) and from 4.6 (in January) to 10.9 (in August), respectively. For each season, the allometric relationship between the physiological response (e.g., rate of oxygen consumption, ammonium and phosphorus excretion) and DW of the animal was estimated using the formula: Y=a x DWb. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.
Resumo:
The function of seismic data in prospecting and exploring oil and gas has exceeded ascertaining structural configuration early. In order to determine the advantageous target area more exactly, we need exactly image the subsurface media. So prestack migration imaging especially prestack depth migration has been used increasingly widely. Currently, seismic migration imaging methods are mainly based on primary energy and most of migration methods use one-way wave equation. Multiple will mask primary and sometimes will be regarded as primary and interferes with the imaging of primary, so multiple elimination is still a very important research subject. At present there are three different wavefield prediction and subtraction methods: wavefield extrapolation; feedback loop; and inverse-scattering series. I mainly do research on feedback loop method in this paper. Feedback loop method includs prediction and subtraction.Currently this method has some problems as follows. Firstly, feedback loop method requires the seismic data used to predict multiple is full wavefield data, but usually the original seismic data don’t meet this assumption, so seismic data must be regularized. Secondly, Multiple predicted through feedback loop method usually can’t match the real multiple in seismic data and they are different in amplitude, phase and arrrival time. So we need match the predicted multiple and that in seismic data through estimating filtering factors and subtract multiple from seismic data. It is the key for multiple elimination how to select a correct matching filtering method. There are many matching filtering methods and I put emphasis on Least-square adaptive matching filtering and L1-norm minimizing adaptive matching filtering methods. Least-square adaptive matching filtering method is computationally very fast, but it has two assumptions: the signal has minimum energy and is orthogonal to the noise. When seismic data don’t meet the two assumptions, this method can’t get good matching results and then can’t attenuate multiple correctly. L1-norm adaptive matching filtering methods can avoid these two assumptions and then get good matching results, but this method is computationally a little slow. The results of my research are as follows: 1. Proposed a method that interpolates seismic traces based on F-K migration and demigration. The main advantage of this method is that it can interpolate seismic traces in any offsets. It shows this method is valid through a simple model. 2. Comparing different Least-square adaptive matching filtering methods. The results show that equipose multi-channel adaptive matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and two field data. 3. Proposed equipose multi-channel L1-norm adaptive matching filtering method. Because L1-norm is robust to large amplitude differences, there are no assumption on the signal has minimum energy and orthogonality, this method can get better results of multiple elimination. 4. Research on multiple elimination in inverse data space. The method is a new multiple elimination method and it is different from those methods mentioned above.The advantages of this method is that it is simple in theory and no need for the adaptive subtraction and computationally very fast. The disadvantage of this method is that it is not stabilized in its solution. The results show that equipose multi-channel and equipose pesudo-multi-channel least-square matching filtering and equipose multi-channel and equipose pesudo-multi-channel L1-norm matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and many field data.
Resumo:
Seismic exploration is the main method of seeking oil and gas. With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in seismic exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which has obtained good effect. However, in complex media with wider angles, the effect of FFD method is not satisfactory. Based on the FFD operator, we extend the two coefficients to be optimized to four coefficients, then optimize them globally using simulated annealing algorithm. Our optimization method select the solution of one-way wave equation as the objective function. Except the velocity contrast, we consider the effects of both frequency and depth interval. The proposed method can improve the angle of FFD method without additional computation time, which can reach 75° in complex media with large lateral velocity contrasts and wider propagation angles. In this thesis, combinating the FFD method and alternative-direction-implicit plus interpolation(ADIPI) method, we obtain 3D FFD with higher accuracy. On the premise of keeping the efficiency of the FFD method, this method not only removes the azimuthal anisotropy but also optimizes the FFD mehod, which is helpful to 3D seismic exploration. We use the multi-parameter global optimization method to optimize the high order term of FFD method. Using lower-order equation to obtain the approximation effect of higher-order equation, not only decreases the computational cost result from higher-order term, but also obviously improves the accuracy of FFD method. We compare the FFD, SAFFD(multi-parameter simulated annealing globally optimized FFD), PFFD, phase-shift method(PS), globally optimized FFD (GOFFD), and higher-order term optimized FFD method. The theoretical analyses and the impulse responses demonstrate that higher-order term optimized FFD method significantly extends the accurate propagation angle of the FFD method, which is useful to complex media with wider propagation angles.
Resumo:
The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.
Resumo:
In exploration seismology, the geologic target of oil and gas reservoir in complex medium request the high accuracy image of the structure and lithology of the medium. So the study of the prestack image and the elastic inversion of seismic wave in the complex medium come to the leading edge. The seismic response measured at the surface carries two fundamental pieces of information: the propagation effects of the medium and the reflections from the different layer boundaries in the medium. The propagation represent the low-wavenumber component of the medium, it is so-called the trend or macro layering, whereas the reflections represent the high-wavenumber component of the medium, it is called the detailed or fine layering. The result of migration velocity analysis is the resolution of the low-wavenumber component of the medium, but the prestack elastic inversion provided the resolution of the high-wavvenumber component the medium. In the dissertation, the two aspects about the migration velocity estimation and the elastic inversion have been studied.Firstly, any migration velocity analysis methods must include two basic elements: the criterion that tell us how to know whether the model parameters are correct and the updating that tell us how to update the model parameters when they are incorrect, which are effected on the properties and efficiency of the velocity estimation method. In the dissertation, a migration velocity analysis method based on the CFP technology has been presented in which the strategy of the top-down layer stripping approach are adapted to avoid the difficult of the selecting reduce .The proposed method has a advantage that the travel time errors obtained from the DTS panel are defined directly in time which is the difference with the method based on common image gather in which the residual curvature measured in depth should be converted to travel time errors.In the proposed migration velocity analysis method, the four aspects have been improved as follow:? The new parameterization of velocity model is provided in which the boundaries of layers are interpolated with the cubic spline of the control location and the velocity with a layer may change along with lateral position but the value is calculated as a segmented linear function of the velocity of the lateral control points. The proposed parameterization is suitable to updating procedure.? The analytical formulas to represent the travel time errors and the model parameters updates in the t-p domain are derived under local lateral homogeneous. The velocity estimations are iteratively computed as parametric inversion. The zero differential time shift in the DTS panel for each layer show the convergence of the velocity estimation.? The method of building initial model using the priori information is provided to improve the efficiency of velocity analysis. In the proposed method, Picking interesting events in the stacked section to define the boundaries of the layers and the results of conventional velocity analysis are used to define the velocity value of the layers? An interactive integrate software environment with the migration velocity analysis and prestack migration is built.The proposed method is firstly used to the synthetic data. The results of velocity estimation show both properties and efficiency of the velocity estimation are very good.The proposed method is also used to the field data which is the marine data set. In this example, the prestack and poststack depth migration of the data are completed using the different velocity models built with different method. The comparison between them shows that the model from the proposed method is better and improves obviously the quality of migration.In terms of the theoretical method of expressing a multi-variable function by products of single-variable functions which is suggested by Song Jian (2001), the separable expression of one-way wave operator has been studied. A optimization approximation with separable expression of the one-way wave operator is presented which easily deal with the lateral change of velocity in space and wave number domain respectively and has good approach accuracy. A new prestack depth migration algorithm based on the optimization approximation separable expression is developed and used to testing the results of velocity estimation.Secondly, according to the theory of the seismic wave reflection and transmission, the change of the amplitude via the incident angle is related to the elasticity of medium in the subsurface two-side. In the conventional inversion with poststack datum, only the information of the reflection operator at the zero incident angles can be used. If the more robust resolutions are requested, the amplitudes of all incident angles should be used.A natural separable expression of the reflection/transmission operator is represented, which is the sum of the products of two group functions. One group function vary with phase space whereas other group function is related to elastic parameters of the medium and geological structure.By employing the natural separable expression of the reflection/transmission operator, the method of seismic wave modeling with the one-way wave equation is developed to model the primary reflected waves, it is adapt to a certain extent heterogeneous media and confirms the accuracy of AVA of the reflections when the incident angle is less than 45'. The computational efficiency of the scheme is greatly high.The natural separable expression of the reflection/transmission operator is also used to construct prestack elastic inversion algorithm. Being different from the AVO analysis and inversion in which the angle gathers formed during the prstack migration are used, the proposed algorithm construct a linear equations during the prestack migration by the separable expression of the reflection/transmission operator. The unknowns of the linear equations are related to the elasticity of the medium, so the resolutions of them provided the elastic information of the medium.The proposed method of inversion is the same as AVO inversion in , the difference between them is only the method processing the amplitude via the incident angle and computational domain.
Resumo:
A self-assembled monolayer of octadecyltrichlorosilane (OTS) was prepared on a single-crystal silicon wafer (111) and its tribological properties were examined with a one-way reciprocating tribometer. The worn surfaces and transfer film on the counterface were analyzed by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that, due to the wear of the OTS monolayer and the formation of the transfer film on the counterpart ball, the friction coefficient gradually increases from 0.06 to 0.13 with increasing sliding cycles and then keeps stable at a normal load of 0.5N. The transfer film is characterized by deposition, accumulation, and spalling at extended test duration. Though low friction coefficients of the monolayer in sliding against steel or ceramic counterfaces are recorded, poor load-carrying capacity and antiwear ability are also shown. Moreover, the monolayer itself or the corresponding transfer film on the counterface fails to lubricate even at a normal load of 1.0 N. Thus, the self-assembled monolayer of octadecyltrichlorosilane can be a potential boundary lubricant only at very low loads.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.