317 resultados para Nickel Compounds
Resumo:
Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.
Resumo:
The effect of combination between a trace of halogenated compounds (such as ferric chloride and ammonium bromide) and Ni2O3 particles on the carbonization of polypropylene (PP) was investigated during combustion. The results showed a synergistic catalysis of combined halogenated compounds with Ni2O3 in promoting the formation of the residual char during combustion. The investigation on the promotion mechanism showed that halide radical releasing from halogen-containing additives worked as a catalyst to accelerate dehydrogenation-aromatization of degradation products of PR which promote the degradation products to form the residual char catalyzed by nickel catalyst.
Resumo:
A series of neutral nickel complexes [Ni(Ph)(PPh3)(N, O)] with Schiff-base ligands (N, O) [N, O = 5-Me-3-tert-Bu-(Ar-N=CH)C6H2O (1, Ar = 2,6-Me2C6H3; 2, Ar = 2,6-i-Pr2C6H3)], [Ni(Ph)(PPh3)(N,O)1, with beta-ketiminato ligands (N, O) [N, O = CH3COCHC=(CH3)N-Ar (3, Ar = 2,6-Me2C6H3; 4, Ar = 2,6-i-Pr2C6H3)] and [Ni(N, N)(PPh3)], and with beta-diketiminato ligands (N, N) [5, N, N = [2,6-i-Pr-2(C6H3)N=C(CH3)](2)CH] have been synthesized and characterized. The molecular structures of complexes 1, 4, and 5 have been confirmed by X-ray single-crystal analyses. Although their ligands have similar structures, complex 4 possesses a structure similar to that of four-coordination nickel with complex 1, while complex 5 reveals a rare three-coordination nickel geometry. These compounds show high catalytic activities of up to 3.16 x 10(7) g PNB mol(-1) Ni h(-1) for the addition polymerization of norbornene in the presence of modified methylaluminoxane (MMAO) as cocatalyst. Catalytic activities, polymer yield, molecular weights, and molecular weight distributions of polyborbornene have been investigated under various reaction conditions.
Resumo:
A nanostructured surface layer was formed on an Inconel 600 plate by subjecting it to surface mechanical attrition treatment at room temperature. Transmission electron microscopy and high-resolution transmission electron microscopy of the treated surface layer were carried out to reveal the underlying grain refinement mechanism. Experimental observations showed that the strain-induced nanocrystallization in the current sample occurred via formation of mechanical microtwins and subsequent interaction of the microtwins with dislocations in the surface layer. The development of high-density dislocation arrays inside the twin-matrix lamellae provides precursors for grain boundaries that subdivide the nanometer-thick lamellae into equiaxed, nanometer-sized grains with random orientations.
Resumo:
Titanium carbide reinforced nickel aluminide matrix in situ composites were produced using a newly patented laser melting furnace. Microstructure of the laser melted TiC/(Ni3Al–NiAl) in situ composites was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results showed that the constituent phases in the laser melted in situ composites are TiC, Ni3Al and NiAl. Volume fraction of TiC and NiAl increase with increasing content of titanium and carbon. The growth morphology of the reinforcing TiC carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid.
Resumo:
Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.
Resumo:
In this paper the microstructure characteristic of the cold-rolled deformed nanocrystalline Nickel metal has been studied by transmission electron microscopy (TEM). The results show that there were step structures near by grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It indicates that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size became about 100 nm, the deformation occurs only depend upon the moving of the boundary of the stack faults (SFs) which result from the imperfection dislocations emitted from GBs. In the other word, the movement of the boundary dislocations of SFs results to growing-up of the size of the SFs, therefore realizes deformation. However, when the size of stack faults grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reach a critical value stopping the gliding of the partial dislocations, the SFs will stop growing up and leave a step structure behind.
Resumo:
The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by “GAMESS”, and the rest atoms are treated as MM part calculated by “TINKER”. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with theQMpart with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.
Resumo:
The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about 100nm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from GBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.
Resumo:
We reported that work softening takes place during room-temperature rolling of nanocrystalline Ni at an equivalent strain of around 0.30. The work softening corresponds to a strain-induced phase transformation from a face-centered cubic (fcc) to a body-centered cubic (bcc) lattice. The hardness decreases with increasing volume fraction of the bcc phase. When the deformed samples are annealed at 423 K, a hardening of the samples takes place. This hardening by annealing can be attributed to a variety of factors including the recovery transformation from the bcc to the fcc phase, grain boundary relaxation, and retardation of dislocation gliding by microtwins.
Resumo:
Internal friction of nanocrystalline nickel is investigated by mechanical spectroscopy from 360 K to 120 K. Two relaxation peaks are found when nanocrystalline nickel is bent up to 10% strain at room temperature and fast cooling. However, these two peaks disappear when the sample is annealed at room temperature in vacuum for ten days. The occurrence and disappearance of the two relaxation peaks can be explained by the interactions of partial dislocations and point defects in nanocrystalline materials.
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Based on detailed x-ray diffraction and transmission electron microscopy we have found body-centered-cubic (bcc) Ni upon room-temperature rolling of nanocrystalline (nc) face-centered-cubic (fcc) Ni. The bcc phase forms via the Kurdjumov-Sachs (KS) martensitic transformation mechanism when the von Mises equivalent strain exceeds similar to 0.3, much higher than accessible in tensile testing. The fcc and bcc phases keep either the KS or the Nishiyama-Wasserman orientation relationship. Our results provide insights into the deformation physics in nc Ni, namely, the fcc-to-bcc phase transformation can also accommodate plasticity at large plastic strains. (C) 2008 American Institute of Physics.
Resumo:
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 x 10(8) s(-1) to 1.4 x 10(11) s(-1). The results show that two critical strain rates, i.e., 5 x 10(9) s(-1) and 8 x 10(10) s(-1), are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 x 10(9) s(-1), Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {111} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8x10(10) s(-1), Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 x 10(9) s(-1) and 8 x 10(10) s(-1), only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {111} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation. (C) 2007 Published by Elsevier B.V.
Resumo:
The melting process of nickel nanowires are simulated by using molecular dynamics with the quantum Sutten-Chen many-body force field. The wires studied were approximately cylindrical in cross-section and periodic boundary conditions were applied along their length; the atoms were arranged initially in a face-centred cubic structure with the [0 0 1] direction parallel to the long axis of the wire. The size effects of the nanowires on the melting temperatures are investigated. We find that for the nanoscale regime, the melting temperatures of Ni nanowires are much lower than that of the bulk and are linear with the reciprocal of the diameter of the nanowire. When a nanowire is heated up above the melting temperature, the neck of the nanowire begins to arise and the diameter of neck decreases rapidly with the equilibrated running time. Finally, the breaking of nanowire arises, which leads to the formation of the spherical clusters. (C) 2004 Elsevier B.V. All rights reserved.