35 resultados para Multiplicity Vector
Resumo:
The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.
Resumo:
It is shown that for a particle with suitable angular moments in the screened Coulomb potential or isotropic harmonic potential, there still exist closed orbits rather than ellipse, characterized by the conserved aphelion and perihelion vectors, i.e. extended Runge-Lenz vector, which implies a higher dynamical symmetry than the geometrical symmetry O-3. The closeness of a planar orbit implies the radial and angular motional frequencies are commensurable.
Resumo:
By the Lie symmetry group, the reduction for divergence-free vector-fields (DFVs) is studied, and the following results are found. A n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV if it admits a one-parameter symmetry group that is spatial and divergenceless. More generally, a n-dimensional DFV admitting a r-parameter, spatial, divergenceless Abelian (commutable) symmetry group can be locally reduced to a (n - r)-dimensional DFV.
Resumo:
There are seven strong earthquakes with M >= 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3 degrees 3 degrees, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.
Resumo:
For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.
Resumo:
A parallel strategy for solving multidimensional tridiagonal equations is investigated in this paper. We present in detail an improved version of single parallel partition (SPP) algorithm in conjunction with message vectorization, which aggregates several communication messages into one to reduce the communication cost. We show the resulting block SPP can achieve good speedup for a wide range of message vector length (MVL), especially when the number of grid points in the divided direction is large. Instead of only using the largest possible MVL, we adopt numerical tests and modeling analysis to determine an optimal MVL so that significant improvement in speedup can be obtained.
Resumo:
It has long been recognized that many direct parallel tridiagonal solvers are only efficient for solving a single tridiagonal equation of large sizes, and they become inefficient when naively used in a three-dimensional ADI solver. In order to improve the parallel efficiency of an ADI solver using a direct parallel solver, we implement the single parallel partition (SPP) algorithm in conjunction with message vectorization, which aggregates several communication messages into one to reduce the communication costs. The measured performances show that the longest allowable message vector length (MVL) is not necessarily the best choice. To understand this observation and optimize the performance, we propose an improved model that takes the cache effect into consideration. The optimal MVL for achieving the best performance is shown to depend on number of processors and grid sizes. Similar dependence of the optimal MVL is also found for the popular block pipelined method.
Resumo:
The focusing properties of a concentric piecewise cylindrical vector beam is investigated theoretically in this paper. The beam consists of three portions with different and changeable phase retardation and polarization. Numerical simulations show that the evolution of the focal shape is very considerable by changing the radius and polarization rotation angle of each portion of the vector beam. And some interesting focal spots may occur, such as two- or three-peak focus, dark hollow focus, ring focus, and two-ring-peak focus. Corresponding gradient force patterns are also computed, and novel trap patterns, including cup shell shape trap with one trap at its each side along axis, rectangle shell shape trap with one trap at its each side, dumbbell optical trap, spherical shell optical trap, may occur, which shows that the concentric piecewise cylindrical vector beam can be used to construct controllable optical tweezers. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its ac
Resumo:
A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
An embedded architecture of optical vector matrix multiplier (OVMM) is presented. The embedded architecture is aimed at optimising the data flow of vector matrix multiplier (VMM) to promote its performance. Data dependence is discussed when the OVMM is connected to a cluster system. A simulator is built to analyse the performance according to the architecture. According to the simulation, Amdahl's law is used to analyse the hybrid opto-electronic system. It is found that the electronic part and its interaction with optical part form the bottleneck of system.
Resumo:
We show that bright-dark vector solitons are possible in biased photorefractive-photovoltaic crystals under steady-state conditions, which result from both the bulk photovoltaic effect and the spatially nonuniform screening of the external bias field. The analytical solutions of these vector solitons can be obtained in the case of \sigma\ much less than 1, where sigma is the parameter controlling the intensities of the two optical beams. In the limit of -1 < sigma much less than 1, these vector solitons can also be determined by use of simple numerical integration procedures. When the bulk photovoltaic effect is neglectable, these vector solitons are bright-dark vector screening solitons studied previously in the \sigma\ much less than 1 regime, and predict bright-dark vector screening solitons in the -1 < sigma less than or equal to 1 regime. When the external bias field is absent, these vector solitons predict bright-dark vector photovoltaic solitons in closed and open circuits. (C) 2002 Elsevier Science B.V. All rights reserved.