52 resultados para Multiphase
Resumo:
Measurement while drilling (MWD) has become a popular survey technology to monitor directional data, drilling data, formation evaluation data and safety data in the world. And closed loop drilling shows promise in recent years. Obviously, the method of tr
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
对涡轮流量传感器进行了理论分析,给出了涡轮流量计仪表常数的计算方法,讨论了获得较大固有仪表常数K_0时涡轮传感器结构参数(如叶片数、涡轮半径、口径等)的优化组合问题,通过多相流动实验,总结出K_0与流动密度之间的实验关系,由此给出用涡轮流量计测量多相流的半理论半经验公式,并在油井多相流量测量中得到了实际应用,符合较好。
Resumo:
A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.
Resumo:
In recent years, considerable research has been conducted into the development of a three-phase flowmeter suitable for use in an offshore environment, and oil/gas/water three-phase metering becomes an important aspect in multiphase flow measurement. This paper discusses the importance of three-phase flow measurement in offshore oil industry, describes the current development in this area, and points out the principal strategies which may be used to meter three-phase flow.
Resumo:
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.
Resumo:
Concise probabilistic formulae with definite crystallographic implications are obtained from the distribution for eight three-phase structure invariants (3PSIs) in the case of a native protein and a heavy-atom derivative [Hauptman (1982). Acta Cryst. A38, 289-294] and from the distribution for 27 3PSIs in the case of a native and two derivatives [Fortier, Weeks & Hauptman (1984). Acta Cryst. A40, 646-651]. The main results of the probabilistic formulae for the four-phase structure invariants are presented and compared with those for the 3PSIs. The analysis directly leads to a general formula of probabilistic estimation for the n-phase structure invariants in the case of a native and m derivatives. The factors affecting the estimated accuracy of the 3PSIs are examined using the diffraction data from a moderate-sized protein. A method to estimate a set of the large-modulus invariants, each corresponding to one of the eight 3PSIs, that has the largest \Delta\ values and relatively large structure-factor moduli between the native and derivative is suggested, which remarkably improves the accuracy, and thus a phasing procedure making full use of all eight 3PSIs is proposed.
Resumo:
A general incremental micromechanical scheme for the nonlinear behavior of particulate composites is presented in this paper. The advantage of this scheme is that it can reflect partly the effects of the third invariant of the stress on the overall mechanical behavior of nonlinear composites. The difficulty involved is the determination of the effective compliance tensors of the anisotropic multiphase composites. This is completed by making use of the generalized self-consistent Mori-Tanaka method which was recently developed by Dai et al. (Polymer Composites 19(1998) 506-513; Acta Mechanica Solida 18 (1998) 199-208). Comparison with existing theoretical and numerical results demonstrates that the present incremental scheme is quite satisfactory. Based on this incremental scheme, the overall mechanical behavior of a hard-particle reinforced metal matrix composite with progressive particle debonding damage is investigated.
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
The present paper contains a detailed study of shock wave reflection from a wedge placed in various suspensions. In past works, the incident shock propagated initially in pure gas and the suspension started only at the leading edge of the deflecting wedge. However, in the present case the entire flow field is filled with a gas-dust suspension and the initial shock wave has steady-state structure relative to the shock front. In former studies the transmitted shock wave starts its propagation into the suspension and is reflected from the wedge at the same time. It is therefore obvious that the two unrelated processes of (2D) reflection and (1D) "transitional" relaxation occur simultaneously. In the present case the suspension behind the incident shock wave has reached steady state (i.e., it is a traveling wave) before the shock reaches the wedge leading edge. The reflection process from the deflecting wedge is studied for different dust mass loadings and different dust-particle diameter. It is shown that when the dust loading is low and the dust particle diameter is small the wave reflection pattern is similar to that observed in a similar pure gas case. In addition, an equilibrium state is reached, behind the evolved waves, very quickly. On the other hand, when the dust loading is relatively high and/or the dust particle diameter is relatively large, the observed reflection wave pattern is very different from that seen in a similar pure gas case. In such cases it takes much longer time to reach an equilibrium state behind the reflecting waves. It is also shown that the dust presence significantly affects the (gas) pressure on the wedge surface. The higher the dust loading is, the higher the pressure on the wedge surface. Suspensions composed of solid particle of different size, but having the same dust mass loading, will approach the same equilibrium pressure. However, it will take longer time to reach an equilibrium state for suspensions having large diameter particles. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.
Resumo:
In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
On the basis of a brief review of the continuum theory for macroscopic descriptions and the kinetic theory for microscopic descriptions in solid/liquid two-phase flows, some suggestions are presented, i.e. the solid phase may be described by the Boltzmann equation and the liquid phase still be described by conservation laws in the continuum theory. Among them the action force on the particles by the liquid fluid is a coupling factor which connects the phases. For dilute steady solid/liquid two-phase flows, the particle velocity distribution function can be derived by analogy with the procedures in the kinetic theory of gas molecules for the equilibrium state instead of being assumed, as previous investigators did. This done, more detailed information, such as the velocity probability density distribution, mean velocity distribution and fluctuating intensity etc. can be obtained directly from the particle velocity distribution function or from its integration. Experiments have been performed for dilute solid/liquid two-phase flow in a 4 x 6 cm2 sized circulating square pipe system by means of laser Doppler anemometry so that the theories can be examined. The comparisons show that the theories agree very well with all the measured data.
Resumo:
This paper describes the experimental and theoretical studies of gas-liquid bubbly flow in vertical upward pipeline carried out at Institute of Mechanics, Chinese Academy of Sciences. Bubbly flow in a vertical pipe with a 3 m long and 5 cm inner diameter plexiglass pipe was experimentally investigated, and studies carried out on the relationship between superficial velocities of the liquid and gas phases and pressure gradient is described. The developed drift-flux model applied to gas-liquid bubbly flow is presented, and the results are compared against the experimental data measured by ours in air/water vertical pipes.