362 resultados para Multicolor emission
Resumo:
YPO4 nano/microcrystals with multiform crystal phases and morphologies, such as hexagonal nano/submicroprisms, spherical-like nanoparticles, and nanorods with different length/diameter ratios as well as tetragonal nanospindles, have been synthesized via a facile hydrothermal route. A series of controlled experiments indicate that the pH values in the initial solution, phosphorus sources, and the organic additive trisodium citrate (Cit(3-)) are responsible for crystal phase and shape determination of final products. It is found that Cit(3-) as a ligand and shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of various geometries of the final products. The possible formation mechanisms for products with diverse architectures have been presented.
Resumo:
beta-NaYF4 hexagonal microprisms and microrods with different aspect ratios have been prepared via a simple hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The influences of reaction temperature and the molar ratio of NaF to y(3+) on the crystal phases and shapes of final products have been studied in detail. The aspect ratios of products increase gradually with the increase of reaction temperature and NaF/Y3+ molar ratio. The growth mechanisms of crystals prepared under the different conditions are presented systematically. More importantly, the systematical investigation on the luminescence properties of beta-NaYF4:xEu(3+) (x = 0.5, 1, 2, 3, 5, and 10 mol %) with hexagonally microprismatic morphology shows the characteristic emissions of Eu3+ (D-5(J)-F-7(J'), J, J' = 0, 1, 2, 3). Under the excitation of single wavelength light of 397 nm, the luminescence colors of the corresponding products can be tuned feasibly from bluish white to yellow to red by changing the doping concentration of Eu3+.
Resumo:
In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.
Resumo:
The effect of thermally activated energy on the dislocation emission from a crack tip in BCC metal Mo is simulated in this paper. Based on the correlative reference model on which the flexible displacement boundary scheme is introduced naturally, the simulation shows that as temperature increases the critical stress intensity factor for the first dislocation emission will decrease and the total number of emitted dislocations increase for the same external load. The dislocation velocity and extensive distance among partial dislocations are not sensitive to temperature. After a dislocation emission, two different deformation slates are observed, the stable and unstable deformation states. In the stable deformation slate, the nucleated dislocation will emit from the crack tip and piles up at a distance far away from the crack tip, after that the new dislocation can not be nucleated unless the external loading increases. In the unstable deformation state, a number of dislocations can be emitted from the crack lip continuously under the same external load.
Resumo:
A series of acoustic emission (AE) experiments of rock failure have been conducted under cyclic load in tri-axial stress tests. To simulate the hypocenter condition the specimens are loaded by the combined action of a constant stress, intended to simulate
Resumo:
A correlative reference model for computer molecular dynamics simulations is proposed. Based on this model, a flexible displacement boundary scheme is introduced and the dislocations emitted from a crack tip can continuously pass through the border of the inner discrete atomic region and pile up at the outer continuum region. The effect of the emitted dislocations within the plastic zone on the inner atomistic region can be clearly demonstrated. The simulations for a molybdinum crystal show that a full dislocation in a bcc crystal is dissociated into three partial dislocations and interaction between the crack and the emitted dislocations results in gradual decrease of the local stress intensity factor.
Resumo:
The interactive pair potential between Al and H is obtained based on the ab initio calculation and the Chen-Mobius 3D lattice inversion formula. By utilizing the pair potentials calculated, the effects of hydrogen on the dislocation emission from crack tip have been studied. The simulated result shows that hydrogen can reduce the cohesive strength for Al single crystal, and then the critical stress intensity factor for partial dislocation emission decreases from 0.11 MPa root m (C-H = 0) to 0.075 MPa root m (C-H=0.72%) and 0.06 MPa root m (C-H = 1.44%). This indicates thar hydrogen can enhance the dislocation emission. The simulation also shows that atoms of hydrogen can gather and turn into small bubbles, resulting in enhancement of the equilibrium vacancy concentration.
Dislocations emission and crack extension at the atomistic crack tip in body-centered-cubic metal Mo
Resumo:
The behaviors of a crack in body-centered-cubic metal Mo under different loading modes were studied using the molecular dynamics method. Dislocation emission was observed near the crack tip in response to mode II loading with theta = 0 degrees in which theta is the inclination angle of the slip plane with respect to the crack plane, and two full dislocations were observed at the stress level of K-II = 1.17 MPa m(1/2) without any evidence of crack extension. Within the range of 0 degrees less than or equal to theta less than or equal to 45 degrees, crack extension was observed in response to mode I loading, and the effect of crystal orientation on the crack propagation was studied, The crack propagated along the [111] slip direction without any evidence of dislocations emission.
Resumo:
A correlative reference model for a computer simulation of molecular dynamics is proposed in this paper. Based on this model, a flexible displacement boundary scheme is naturally introduced and the dislocations emitted from a crack tip are presumed to continuously pass through the border of an inner discrete atomic region to pile up at an outer continuum region. The simulations for a Mo crystal show that the interaction between a crack and emitted dislocations results in the decrease in local stress intensity factor gradually.
Resumo:
To further investigate the mechanism of acoustic emission (AE) in the rock fracture experiment, moment tensor analysis was carried out. The AE sources characterized by crack sizes, orientations and fracture modes, are represented by a time-dependent momen
Resumo:
In this paper, a unified model for dislocation nucleation, emission and dislocation free zone is proposed based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations, located away from the crack tip in the form of an inverse pileup, define the plastic zone. Between that zone and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field and the dislocation density field in the cohesive zone and plastic zone being, respectively, expressed in the first and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set of nonlinear algebraic equations can be obtained and solved with the Newton-Raphson Method. The results of calculations for pure shearing and combined tension and shear loading after dislocation emission are given in detail. An approximate treatment of the dynamic effects of the dislocation emission is also developed in this paper, and the calculation results are in good agreement with those of molecular dynamics simulations.
Resumo:
A general theory of fracture criteria for mixed dislocation emission and cleavage processes is developed based on Ohr's model. Complicated cases involving mixed-mode loading are considered. Explicit formulae are proposed for the critical condition of crack cleavage propagation after a number of dislocation emissions. The effects of crystal orientation, crack geometry and load phase angle on the apparent critical energy release rates and the total number of the emitted dislocations at the initiation of cleavage are analysed in detail. In order to evaluate the effects of nonlinear interaction between the slip displacement and the normal separation, an analysis of fracture criteria for combined dislocation emission and cleavage is presented on the basis of the Peierls framework. The calculation clearly shows that the nonlinear theory gives slightly high values of the critical apparent energy release rate G(c) for the same load phase angle. The total number N of the emitted dislocations at the onset of cleavage given by nonlinear theory is larger than that of linear theory.
Resumo:
The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.
Resumo:
Full-scale experiments were performed on a 300 MWe utility boiler retrofitted with air staging. In order to improve boiler thermal efficiency and to reduce NOx emission, the influencing factors including the overall excessive air ratio, the secondary air distribution pattern, the damper openings of CCOFA and SOFA, and pulverized coal fineness were investigated. Through comprehensive combustion adjustment, NOx emission decreased 182 ppm (NOx reduction efficiency was 44%), and boiler heat efficiency merely decreased 0.21%. After combustion improvement, high efficiency and low NOx emission was achieved in the utility coal-fired boiler retrofitted with air staging, and the unburned carbon in ash can maintain at a desired level where the utilization of fly-ash as byproducts was not influenced.