20 resultados para Mouse lymphoma cells
Resumo:
Trichosanthin (TCS) is a ribosome-inactivating protein from root tubers of Trichosanthes kirilowii Maxim. In this paper, the effects of TCS on the viability of human peripheral blood immunocytess, on the proliferation of lymphocytes, and its cytotoxicity to twelve cell lines of lymphoma or leukemia had been observed. TCS at high concentration (>12.5 mu g/ml) affected the viability of human B lymphocytes, but not that of human peripheral blood mononuclear cells (PBMCs), T lymphocytes and granulocytes. Human peripheral blood-derived monocytes/macrophages were highly sensitive to TCS (ID50 at 1.70 mu g/ml). TCS suppressed lymphocyte proliferation stimulated by Concanavalin A (Con A) or lipopolysaccharide (LPS). Human T cell lines and macrophage cell lines were more sensitive (ID50 < 0.9 mu g/ml) to TCS than B cell lines and myeloid lines. These results suggest that selective cytotoxicity of TCS to human macrophages/monocytes may be implicated in anti-HIV activity, and that selectively killing some leukemia-lymphoma cells by TCS merit further evaluation in treatment of some lymphoma and leukemia.
Resumo:
Syncytin is a placenta-specific protein and generally believed to play a pivotal role in syncytiotrophoblast morphogenesis. In this study, transcripts of this gene were quantified by real-time RT-PCR and the translated products were measured by an indirect immunofluorescence assay. Results showed that syncytin was found to be expressed in all nine leukemia and lymphoma cell lines studied albeit at different levels and in 43 peripheral blood samples of 57 leukemia or lymphoma patients. Neither the transcripts nor the translated syncytin was detected in blood samples of normal individuals. In conclusion, peripheral blood syncytin may serve as a marker for leukemia and lymphoma. ©
Resumo:
Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.
Resumo:
本研究的目的是探讨天花粉蛋白(TCS)对人白血病和淋巴瘤细胞系的杀伤作用机制.用台盼蓝染色法检测TCS对细胞生长的影响,应用流式细胞术检测TCS诱导细胞凋亡的情况及对细胞生长周期的影响.结果表明:12.5μg/ml浓度的TCS可以显著抑制各种白血病细胞系的增殖,但对T淋巴细胞系和巨噬细胞细胞系表现为诱导细胞凋亡的作用,而对B淋巴瘤细胞系则表现为生长抑制效应.通过细胞周期检测发现,TCS可以将B淋巴瘤细胞系细胞阻滞在S期,从而抑制细胞增殖,但对T淋巴细胞系则无明显影响.结论:TCS以不同的作用机制杀伤白血病细胞,根据不同的细胞类型分别表现为诱导细胞凋亡和阻滞细胞生长周期的作用.
Resumo:
人类内源性病毒(HERVs)是远古具有感染能力的逆转录病毒整合于人类基因组的遗迹, 大约占人类基因组的3%~8%,至少包括31个家族。它们通过不同的途径参与人类各种生理和病理活动的调节过程。大多数人类内源性病毒的基因, 由于基因的突变或部分缺失而失去了转录的能力。但有些基因依然保持完整的开放读码框, 能翻译成有功能的蛋白, 如HERV-W家族的囊膜蛋白合胞素基因, 可以被转录并翻译成有功能的蛋白质。目前合胞素的生理功能以及在各种病理过程中的作用机制仍然不清楚。国内对于合胞素的功能研究处于起步阶段,尚无商品化试剂,而且也没有合胞素抗体制备的报道。我们通过PCR扩增人合胞素基因编码区的DNA片段,将其克隆入原核表达质粒pET30a (+),转化大肠杆菌 BL21,诱导产生了合胞素-His融合蛋白。采用割胶回收的方法纯化目的蛋白, 免疫新西兰白兔, 制备了多克隆抗体。最后通过ELISA、Western-Blot和免疫组织化学等方法检测抗体的效价和特异性。我们成功表达并纯化了合胞素-His融合蛋白, SDS-PAGE分析表明融合蛋白主要以包涵体形式存在;ELISA法测定抗体效价为 1:10 000;Western-Blot和免疫组织化学结果显示所制备的抗体能特异性识别合胞素蛋白,为下一步研究合胞素的生物学功能奠定了基础。我们首次发现,合胞素能够在白血病和淋巴瘤细胞系中表达。利用我们制备的抗合胞素多克隆抗体,我们进一步检测该基因是否在白血病和淋巴瘤患者的外周血中表达,所有患者的外周血标本,均来自云南省有关医院。作为对照,我们还检测了20 名健康志愿者的外周血细胞。实验证明,合胞素基因(包括 mRNA 和蛋白)也在白血病患者的外周血细胞表达,而不表达于健康志愿者的血细胞。在30 名不同的白血病和淋巴瘤患者中,有22 名有合胞素的表达。荧光实时定量RT-PCR 的方法比较了合胞素在细胞系和白血病患者外周血中表达的相对定量,发现合胞素基因在所检测的5 种淋巴细胞系、3 种粒细胞系和1 种淋巴瘤细胞系中都有相对稳定的表达,表达水平与C8166 细胞系相比,介于0.5-2 倍之间。而在白血病患者中的表达则介于1.8-33.4 倍不等。我们的结果提示,合胞素可能与白血病的形成有关,因为该基因表达的囊膜蛋白具有很强的促细胞融合活性,含有具有免疫抑制活性的肽段,而且已发现某些与其类似的蛋白有致瘤能力。
Resumo:
The mouse tumor cell 5180 and human liver carcinoma cell SMC 7721 cells were first treated with R-PE and its subunits (alpha, beta, gamma subunits), then irradiated with Argon laser (496 nm, 28.8 J/cm(2)). Survival rate was measured by MTT method. In order to compare the phototoxicity in normal cells, the mouse marrow cells were treated with photofrin II and beta-subunit, irradiated with 45 J/cm(2) of light; survival rate was also measured by MTT method. The result showed that R-PE subunits had better PDT effect on s180 cells than R-PE and lower phototoxicity in marrow cells than photofrin II Flow cytometric analysis showed that PDT results in a growth inhibition and a G(0)-G(1) cell cycle arrest in SMC 7721 cells. The tumor cells inhibited by PDT in vivo were morphologically observed by TEM, the tumor cell death was daze to the occlusion of tumor blood vessels and inducement of cell programmed death in nuclei. Therefore, with the advantage in special fluorescence activity, loth molecular weight, good light absorbent character and weak phototoxicity, R-PE subunit is art attractive option for improving the selectivity of PDT.
Resumo:
To understand better the molecular mechanisms of differential migration of antibody-secreting cells (ASCs) into mouse genital tracts, and regulation by sex hormones, surface markers, hormone receptors and adhesion molecules in mouse SG2 and PA4 hybridoma cells, respectively, secreting IgG2b and polymeric IgA antibody were detected by flow cytometry or RT-PCR. Semiquantitative RT-PCR was also used for measuring mRNA expression of adhesion molecules and chemokines (VCAM-1, ICAM-1, P-selectin, JAM-1 and CXCL12) in genital tracts of various adult mouse groups. The mRNAs of androgen receptor, estrogen receptor beta and CXCR4 were expressed in the ASCs. Sex hormones had no effect on expression of these molecules in ASCs. Except for VCAM-1, mRNA of all examined genes was expressed in normal mouse genital tracts. The mean of relative amounts of ICAM-1 and CXCL12 mRNA in all examined organs of females were higher (2.1- and 1.9-fold) than those in males. After orchiectomy or ovariectomy, the expression of ICAM-1, CXCL12 and P-selectin mRNA in the examined organs increased, except JAM-1 in male and CXCL12 in female. Sex hormone treatment recovered the changes to normal levels of mRNA expression in many examined genital tissues. In combination with our previous work, preferential migration of ASCs into female genital tract and regulation of migration by sex hormones are associated with expression patterns of adhesion molecules and chemokines in genital tract rather than in ASCs. (C) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Spermiogenesis is a unique process in mammals during which haploid round spermatids mature into spermatozoa in the testis. Its successful completion is necessary for fertilization and its malfunction is an important cause of male infertility. Here, we report the high-confidence identification of 2116 proteins in mouse haploid germ cells undergoing spermiogenesis: 299 of these were testis-specific and 155 were novel. Analysis of these proteins showed many proteins possibly functioning in unique processes of spermiogenesis. Of the 84 proteins annotated to be involved in vesicle-related events, VAMP4 was shown to be important for acrosome biogenesis by in vivo knockdown experiments. Knockdown of VAMP4 caused defects of acrosomal vesicle fusion and significantly increased head abnormalities in spermatids from testis and sperm from the cauda epididymis. Analysis of chromosomal distribution of the haploid genes showed underrepresentation on the X chromosome and overrepresentation on chromosome 11, which were due to meiotic sex chromosome inactivation and expansion of testis-expressed gene families, respectively. Comparison with transcriptional data showed translational regulation during spermiogenesis. This characterization of proteins involved in spermiogenesis provides an inventory of proteins useful for understanding the mechanisms of male infertility and may provide candidates for drug targets for male contraception and male infertility.
Resumo:
In the present study, five homologous feeder cell lines were developed for the culture and maintenance of rhesus monkey embryonic stem cells (rESCs). Monkey ear skin fibroblasts (MESFs), monkey oviductal fibroblasts (MOFs), monkey follicular granulosa fibroblast-like (MFG) cells, monkey follicular granulosa epithelium-like (MFGE) cells, and clonally derived fibroblasts from MESF (CMESFs) were established and compared with the ability of mouse embryonic fibroblasts (MEFs) to support rESC growth. MESF, MOF, MFG, and CMESF cells, but not MFGE cells, were as good as or better than MEFs in supporting undifferentiated growth while maintaining the differentiation potential of the rESCs. In an effort to understand the unique properties of supportive feeder cells, expression levels for a number of candidate genes were examined. MOF, MESF, and MEF cells highly expressed leukemia inhibitory factor, ciliary neurotrophic factor, basic fibroblast growth factor, stem cell factor, transforming growth factor PI, bone morphogenetic protein 4, and WNT3A, whereas WNT2, WNT4, and WNT5A were downregulated, compared with MFGE cells. Additionally, all monkey feeder cell lines expressed Dkk1 and LRP6, antagonists of the WNT signaling pathway, but not WNT1, WNT8B, or Dkk2. rESCs grown on homologous feeders maintained normal karyotypes, displayed the characteristics of ESCs, including morphology, alkaline phosphatase, Oct4, the cell surface markers stage-specific embryonic antigen (SSEA)-3, SSEA-4, tumor-related antigen (TRA)-1-60, and TRA-1-81, and formed cystic embryoid bodies in vitro that included differentiated cells representing the three major germ layers. These results indicate that the four homologous feeder cell lines can be used to support the undifferentiated growth and maintenance of pluripotency in rESCs.
Resumo:
The pluripotency and self-renewal of embryonic stem cells (ESC) are regulated by a variety of cytokines/growth factors with some species differences. We reported previously that rabbit ESC (rESC) are more similar to primate ESC than to mouse ESC. However,
Resumo:
In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.
Resumo:
BALB/c mice were immunized intragastrically with human sperm. Cells from the Peyer's patches and spleens of the immunized mice were for the preparation of hybridomas secreting antisperm monoclonal IgA (mcIgA). The specific ratio of IgA-secreting cells in Peyer's patches was much higher than that in spleen. The binding site on human sperm of 9 of 19 mcIgA was in the post-acrosomal region using an immunofluorescent assay. Two of eight selected mcIgA caused strong human sperm agglutination and three of them produced significant inhibition of mouse in vitro fertilization. No mcIgA tested caused obvious human sperm immobilization or inhibited mouse in vivo fertilization. In vitro assembly of selected mcIgA in ascites with mouse secretory component (SC) caused no significant changes in effects on sperm function and in vitro fertilization. By use of Western blotting, dimer or higher polymers were demonstrated in all selected mcIgAs and corresponding protein antigens in 6 of 8 selected mcIgAs. These results suggest that human sperm function may be inhibited and fertilization rate reduced by specific secretory IgA to human sperm and that secretory immunity to protein antigens of human sperm could be induced by intragastrointestinal immunization.
Resumo:
Sertoli cells play a central role in the control and maintenance of spermatogenesis. Isolated Sertoli cells of mouse and rat testes have been shown to secrete plasminogen activator (PA) and a plasminogen activator inhibitor type-1 (PAI-1) in culture. In this study, we have investigated the hormonal regulation of PA and PAI-1 activities in cultured monkey Sertoli cells. Sertoli cells (5x10(5) cells/well) isolated from infant rhesus monkey testes were preincubated at 35 degrees C for 16 h in 24-well plates precoated with poly(D-lysine) (5 mu g/cm(2)) in 0.5 mi McCoy's 5a medium containing 5% of fetal calf serum and further incubated for 48 h in 0.5 mi serum-free medium with or without various hormones or other compounds, PA as well as PAI-1 activities in the conditioned media were assayed by fibrin overlay and reverse fibrin autography techniques respectively. The Sertoli cells in vitro secreted only tissue-type PA (tPA), no detectable amount of urokinase-type PA (uPA) could be observed, Monkey Sertoli cells were also capable of secreting PAI-1, Immunocytochemical studies indicated that both tPA and PAI-1 positive staining localized in the Sertoli cells, spermatids and residual bodies of the seminiferous epithelium; Northern blot analysis further confirmed the presence of both tPA and PAI-1 mRNA in monkey Sertoli cells. Addition of follicle-stimulating hormone (FSH) or cyclic adenosine monophosphate (cAMP) derivatives or cAMP-generating agents and gonadotrophin-releasing hormone (GnRH) agonist or phorbol ester (PMA) to the cell culture significantly increased tPA activity. PAI-1 activity in the culture was also enhanced by these reagents except 8-bromo-dibutyryl-cAMP, forskolin and 3-isobutyl-1-methylxanthin (MIX) which greatly stimulated tPA activity, whereas decreased PAI-1 activity, implying that neutralization of PAI-1 activity by tile high level of tPA in the conditioned media may occur. These data suggest that increased intracellular signals which activate protein kinase A (PKA), or protein kinase C (PKC) can modulate Sertoli cell tPA and PAI-1 activities, The concomitant induction of PA and PAI-1 by the same reagents in the Sertoli cells may reflect a finely tuned regulatory mechanism in which PAI-1 could limit the excession of the proteolysis.