16 resultados para Marcadores SCAR
Resumo:
P>Sex controls have been performed in some farmed fish species because of significant growth differences between females and males. In yellow catfish (Pelteobagrus fulvidraco), adult males are three times larger than female adults. In this study, six Y- and X-linked amplified fragment length polymorphism fragments were screened by sex-genotype pool bulked segregant analysis and individual screening. Interestingly, sequence analysis identified two pairs of allelic genes, Pf33 and Pf62. Furthermore, the cloned flanking sequences revealed several Y- and X-specific polymorphisms, and four Y-linked or X-linked sequence characterized amplified region (SCAR) primer pairs were designed and converted into Y- and X-linked SCAR markers. Consequently, these markers were successfully used to identify genetic sex and YY super-males, and applied to all-male population production. Thus, we developed a novel and simple technique to help commercial production of YY super-males and all-male populations in the yellow catfish.
Resumo:
Gibel carp ( Carassius auratus gibelio) is a uniquely gynogenetic species with a minor ratio of males in natural habitats, but its male origin and sex determination mechanisms have been unknown. In this study, a male-biased mutant family was discovered from the gynogenetic gibel carp, and a male-specific SCAR marker was identified from the mutant family. Normal spermatogenesis was observed in the male testes by immuno. fluorescence histochemistry. Nearly identical AFLP profiles were observed between males and females, but a male-specific 86 bp AFLP fragment was screened by sex-pool bulked segregant analysis and individual screening. Based on the male-specific AFLP fragment, a total of 579 bp sequences were cloned by genome walking. Subsequently, a male-specific SCAR marker was designed, and the male-specific DNA fragment was confirmed to be steadily transmitted to the next generation and consistently detected only in males. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Random amplified polymorphic DNA (RAPD) molecular markers specific for one, two or three clones have been identified from five gynogenetic clones of silver crucian carp (Carassius auratus gibelio Bloch) using RAPD markers developed earlier. In this study, three RAPD markers (RA1-PA, RA2-EF and RA4-D) produced by Opj-1, and two RAPD DNA fragments (RA3-PAD and RA5-D) produced by Opj-7, were selected for molecular cloning and sequencing. Sequence data indicated that there were identical 801-bp nucleotide sequences in the shared marker RA1-PA cloned respectively from clones P and A, and the shared marker RA2-EF (which was cloned from clones E and F), were also of identical 958-by nucleotide sequences. The nucleotide sequences of the shared marker RA3-PAD fragments were also similar for 1181 by among clones P, A and D. The specific fragment RA4-D was composed of 628 bp, and the fragment RA5-D from clone D contained 385 nucleotides. According to the nucleotide sequences, we designed and synthesized five pairs of sequence characterized amplified regions (SCAR) primers to identify the specific fragments in these gynogenetic clones of silver crucian carp. Only individuals from clones P and A amplified a specific band using a pair of SCI-PA primers synthesized according to the marker RA1-PA sequences, whereas no products were detected in individuals from clones D, E and F. The PCR products amplified using SC2-EF and SC3-PAD primers were as expected. Furthermore, the pair of SC4-D primers amplified specific bands only in individuals from clone D, although weak bands could be produced in all individuals of the five clones when lower annealing temperatures were used. However, an additional pair of SC5-D primers designed from the RA5-D marker sequences could amplify a DNA band in individuals from clones P, A and D, and the same weak band was produced in clone E, whereas no products were detected in individuals from clone F. Searches in GenBank revealed that the 385-bp DNA fragment from RA5-D was homologous to the 5' end of gonadotropin I beta subunit 2 gene and growth hormone gene. No homologous sequences were found for other markers in GenBank. The SCAR markers identified in this study will offer a powerful, easy, and rapid method for discrimination of different clones and for genetic analyses that examine their origins and unique reproductive modes in crucian carp. Furthermore, they will likely benefit future selective breeding programs as reliable and reproducible molecular markers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
介绍了R IBLL终端LA SCAR上PM T阵列电源高压控制系统。该系统以当今工程控制中常用的微型计算机作为核心器件,采用合适的外围电路达到了对PM T阵列稳定、可靠的控制,在现场测试中取得了良好的效果。
Resumo:
A species-specific SCAR marker for rainbow trout, which was used to detect adulteration and fraudulent labeling in Atlantic salmon products, has been developed based on the AFLP analysis and evaluated in this study. The SCAR marker could be amplified and visualized in 1% agarose gel in all tested rainbow trout samples and absent in all salmon samples. Using DNA admixtures, the detection of 1% (0.5 ng), 10% (5 ng) rainbow trout DNA in Atlantic salmon DNA for fresh and processed samples, respectively was readily achieved. The molecular approach was sensitive and demonstrated to be a rapid and reliable method for identifying frauds in salmon products and could be extended for applications of species identification in food industry.
Resumo:
构树(Broussonetia papyrifera L.)为桑科(Moraceae)构树属(Broussonetia)落叶乔木,广泛分布于亚洲东部及太平洋岛屿。它是我国重要的经济林木,具有重要的经济价值,其树皮纤维品质优良,自古就是造纸的优良原料;叶片可用作饲料;果实具有重要的药用价值;环境适应性强,是迅速绿化荒山、荒滩和盐碱地的理想树种。因此对构树这些特性的深入研究和开发利用具有非常重要的实际应用价值。本研究以日本和国内构树主要分布区域的的10种生态型及杂交构树共23份材料,摸索并改进了构树DNA的提取方法,建立了稳定的SRAP分子标记体系,以杂交构树组培苗为材料从120对引物组合中筛选出条带信息较高的17对SRAP引物,以这些引物对23份构树材料进行PCR扩增和标记分析。 本研究取得的主要结果如下: (1)本实验首次将SRAP技术应用于构树的研究中,建立起构树稳定的SRAP-PCR反应体系;实验中对影响扩增的5个主要因素进行了优化,确定20 μL PCR反应体系中各因素最适浓度:模板DNA浓度80 ng/(20 μL),Mg2+浓度2.0 mM,dNTP浓度0.6 mM,引物浓度0.8 mM,Taq 酶浓度1.5 U/(20 μL)。 (2)从120对引物组合中筛选出来的17对SRAP引物对21份不同生态型构树样本(21份材料指的是除两份杂交构树材料外的其它生态型构树,以下同)进行PCR扩增,共扩增出439条带,平均每对引物25.5条,其大小介于100~1,000 bp之间,其中多态性条带319条,占总数的72.67%。 (3)用Popgene1.32软件进行分析,计算出Shannon信息指数(I)值为0.2275(0.2042),物种水平的Nei基因多样性(H)值为0.1336(0.1436),表明各生态型构树之间的平均遗传多态性不高,中国大陆各生态型构树Shannon信息指数(I)值仅为0.1675(0.2271),物种水平的Nei基因多样性(H)值为0.1039(0.1540),群体遗传多样性较低,构树的遗传分化主要存在于中国和日本之间。 (4)用NTSYS-2.10e软件进行聚类分析,发现不同生态型构树按距离关系远近及分布区域可划分为不同类群。在遗传相似系数0.57附近,对21份材料进行聚类分析发现其可分为两个群体,一类为日本生态型,另一类为中国生态型,表明日本构树与中国野生种构树种源遗传相似性较小。中国各生态型构树在遗传相似系数0.91处可分为5类,总体而言,中国各地区之间的构树遗传相似度较高。对杂交构树分析表明,其亲缘关系与日本构树(母本)更接近。 (5)日本及杂交构树的SCAR标记。本研究找到两条日本及杂交构树的特异性条带,回收、测序,再根据序列往里重新设计引物,转变成稳定性更好,更直观的SCAR标记,这为挑选性状优良的日本及杂交构树提供重要的参考,对其育种有一定的指导意义。其中一条片段经与NCBI数据库比对发现与拟南芥磺基转移酶家族基因具有较高的同源性。
Resumo:
Polyploid gibel carp, Carassius auratus gibelio, is an excellent model system for evolutionary genetics owing to its specific genetic background and reproductive modes. Comparative karyotype studies were performed in three cultured clones, one artificially manipulated group, and one mated group between two clones. Both the clones A and P had 156 chromosomes in their karyotypes, with 36 metacentric, 54 submetacentric, 36 subtelocentric, 24 acrocentric, and six small chromosomes. The karyotype of clone D contained 162 chromosomes, with 42 metacentric, 54 submetacentric, 36 subtelocentric, 24 acrocentric, and six small chromosomes. All the three clones had six small chromosomes in common. Group G, being originated from the clone D by artificial manipulation, showed supernumerary microchromosomes or chromosomal fragments, in addition to the normal chromosome complement that was identical to the clone D. The offspring from mating between clones D and A had 159 chromosomes. Comparing with the clone A, the DA offspring showed three extra metacentric chromosomes. In addition, variable RAPD fingerprint patterns and unusual SCAR marker inheritance were, respectively, detected among individuals of artificial group G and in the mated DA offspring. Both the chromosome and molecular findings suggest that genome reshuffling might have occurred by manipulation or mating of the clones.
Resumo:
Twenty-seven Porphyra lines from 5 classes, including lines widely used in China, wild lines, and lines introduced to China from abroad in recent years, were screened by means of amplified fragment length polymorphism (AFLP) with 24 primer pairs. From the generated AFLP products, 13 bands that showed stable and repeatable AFLP patterns amplified by primer pairs M-CGA/E-AA and M-CGA/E-TA were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with digitals 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band. On the basis of these results, computerized AFLP DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique AFLP,fingerprinting pattern and can be easily distinguished from others. Software called PGI-AFLP (Porphyra germplasm identification-AFLP) was designed for identification of the 27 Porphyra lines. In addition, 21 specific AFLP markers from 15 Porphyra lines were identified; 6 AFLP markers from 4 Porphyra lines were sequenced, and 2 of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed AFLP DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification, and resource protection of the Porphyra lines.
Resumo:
Inter-simple sequence repeat (ISSR) analysis was used to assess genetic diversity among 10 pairs of male and female Laminaria gametophytes. A total of 58 amplification loci was obtained from 10 selected ISSR primers, of which 34 revealed polymorphism among the gametophytes. Genetic distances were calculated with the Dice coefficient ranging from 0.006 to 0.223. A dendrogram based on the unweighted pair-group method arithmetic (UPGMA) average showed that most male and female gametophytes of the same species were clustered together and that 10 pairs of gametophytes were divided into four groups. This was generally consistent with the taxonomic categories. The main group consisted of six pairs of gametophytes, which were selected from Laminaria japonica Aresch. by intensive inbreeding through artificial hybridization. One specific marker was cloned, but was not converted successfully into a sequence characterized amplified region (SCAR) marker. Our results demonstrate the feasibility of applying ISSR markers to evaluate Laminaria germplasm diversities.
Resumo:
Twenty-seven Porphyra lines, including lines widely used in China, wild lines and lines introduced to China from abroad in recent years, were screened by random amplified polymorphic DNA (RAPD) technique with 120 operon primers. From the generated RAPD products, 11 bands that showed stable and repeatable RAPD patterns amplified by OPC-04, OPJ-18 and OPX-06, respectively were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with two digitals, 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band, respectively. Based on the above results, computerized DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique fingerprinting pattern and can be easily distinguished from others. Software named PGI (Porphyra germplasm identification) was designed for identification of the 27 Porphyra lines. In addition, seven specific RAPD markers from seven Porphyra lines were identified and two of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification and resource protection of the Porphyra lines.
Resumo:
Random amplified polymorphism DNA (RAPD) analysis was applied to germplasm characterization in 33 different selected Laminaria male and female gametophytes. The positional homology of the RAPD analysis using sequence characterized applied region (SCAR) method was successfully conducted. A total of 233 polymorphic loci were obtained from 18 selected primers after screening, of which 27 stable and clear bands were selected to construct a fingerprint map for discrimination of each gametophyte. Seven RAPD markers from five primers were finally determined by a computer program to construct the fingerprint map. Three specific markers closely related with gametophytes were obtained and were converted to gametophytic SCAR markers, the first SCAR marker report on Laminaria germplasm and applicable to cultivars identification. These results demonstrated the feasibility of applying RAPD markers to germplasm characterization in selected Laminaria gametophytes, and can provide a molecular basis for breeding new Laminaria strains. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Eleven pairs of Undaria pinnatifida (Harv.) Suringar gametophytes were identified with random amplified polymorphic DNA (RAPD) technique. After screening 100 primers, 20 ten-base primers were determined for the RAPD analysis. A total of 312 polymorphic loci were obtained, of which 97.7% were polymorphic. The primer S198 was found to distinguish all the selected Undaria pinnatifida gametophytes. The genetic distances between each two of the twenty-two U. pinnatifida gametophytes ranged from 0.080 to 0.428, while the distances to the Laminaria was 0.497 on average. After reexamination, two sequences characterized amplification region (SCAR) markers were successfully converted, which could be applied to U. pinnatifida germplasm identification. All these results demonstrated the feasibility of applying RAPD markers to germplasm characterization and identification of U. pinnatifida gametophytes, and to provide a molecular basis for Undaria breeding.
Resumo:
本文在CTAB和SDS/K+两种DAN提取方法基础上,综合与改进,建立了海带配子体DNA的提取和纯化方法。用此法得到了较高质量的海带配子体DNA,可有效地应用于海带分子标记的研究。采用RAPD,ISSR和AFLP三种DNA分子标记技术对海带配子体细胞系进行了种质鉴定和评价,结果表明:1)RAPD方法可以有效地应用于海带配子体细胞系的鉴定,用三个RAPD引物(OPC20,OPD20和OPD15)构建的DNA指纹图谱,不仅能将23个海带配子体细胞系区分开,而且能将每种海带的雌、雄配子体区分开。2)在没有其它海带配子体DNA分子标记背景资料的前提下,运用ISSR标记方法,辅证了RAPD方法的有效性及可靠性,排除了因原核生物的“污染”,所造成的RAPD标记方法的干扰,同时,也能辨别非海带配子体,这可以评价海带配子体保存的实际效果。3)AFLP分子标记结果表明,海带配子体细胞系具有高的多态性,这对海带具体性状进行连锁标记分析,可能是有效的方法。4)在RAPD标记的基础上,初步建立海带配子体SCAR标记,为海带分子标记辅助选种、育种打下基础。5)对3F、5F、12M三个实验材料,进一步用rDNA转录间隔区(ITS1)测序分析,与已知海带配子体ITS1的差别很大,说明不是海带配子体。综合上述,RAPD,ISSR和AFLP三种DNA分子标记技可以对海带种质资源进行鉴定、评估,为海带科学保种、选种提供依据。
Resumo:
羊栖菜是重要的大型经济海藻之一,在食品、医药、化工领域都有广泛应用。本研究对羊栖菜养殖生产中常见的品系“鹿丰1号”及另外2种品系进行了DNA指纹分析及遗传变异的研究,构建了遗传指纹图谱,分析了不同种群的遗传关系,为羊栖菜的种质鉴定及遗传选育提供了理论依据。 运用RAPD分子标记技术,对5个羊栖菜的种群中共125个个体进行了分析,从300个引物中筛选出12条随机扩增引物共扩增135个位点,多态位点比率为84.4%。从中选择了4个多态性位点,构建了5种羊栖菜DNA指纹图谱,并获得了“鹿丰1号”SCAR标记。另外,进行了5种羊栖菜种群的遗传背景的分析,结果表明“鹿丰1号”与品系2可以明显的与野生种群分开。根据Dice常数计算所得的5个种群的遗传距离在0.1116-0.2563之间。 运用ISSR分子标记技术,对5个种群的125个羊栖菜个体进行分析,通过90条引物的筛选,获得10条ISSR引物,扩增出92个位点,多态位点比率为67.4%。5个种群的遗传距离在0.0863-0.1454之间。 本研究以铜藻作为外群,通过2种遗传标记分析,证明铜藻与5种羊栖菜种群的遗传距离均远远大于其种群之间的遗传距离;另外,“鹿丰1号”不同年份的种群之间的遗传距离均为其中的最小值,相关结果对羊栖菜遗传选育和种质鉴定等有参考价值。