54 resultados para MQL with water
Resumo:
Three new copper compounds, Cu-2[C12H8N2](2)[C28H2OS4O16][H2O](11.9) (1), Cu-2[C12H8N2](3)[C28H20S4O16][H2O](5) (2), and Cu-2[C12H8N2](4)[C24H12S8O16][H2O](10.5) (3), were hydrothermally synthesized and structurally determined by X-ray diffraction and TG-DTA analyses. Interestingly, Compounds 1 and 2 were synthesized in a one-pot reaction. Complexes 1 and 3 contain capsule units, which are further assembled into three-dimensional (3-D) architectures with a-Po-related topology by pi-pi stacking and/or hydrogen-bonding interactions.
Resumo:
The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (K-oc) was developed based on correlations with k in soil/water systems. Strong log K-oc versus log k correlations (r>0.96) were found. The estimated K-oc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated K-oc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new class of polymeric amine, namely, sulfonated cardo poly(arylene ether sulfone) (SPES-NH2) was synthesized and used for the preparation of thin-film composite membrane. The TFC membranes were prepared on a polysulfone supporting film through interfacial polymerization with trimesoyl chloride (TMC) solutions and amine solutions containing SPES-NH2 and m-phenylenediamine (MPDA). The resultant membranes were characterized with water permeation performance, chemical structure, hydrophilicity of active layer and membrane morphology including top surface and cross-section.
Resumo:
The influence of water on the brittle behavior of beta-cristobalite is studied by means of molecular dynamics (MD) simulation With the TTAM potential. Crack extension of mode 1 type is observed as the crack opening is filled LIP With water. The critical stress intensity factor K-lc(MD) is used to characterize the crack extension of MD simulation. The surface energy of SiO2 covered with layers of water is calculated at temperature of 300 K. Based oil the Griffith fracture criterion, the critical stress intensity factor K-lc(Griffith) is calculated, and it is in good agreement with that of MD simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) were measured in the water column from Three Gorges Reservoir (TGR) collected in May 2008 using semipermeable membrane devices (SPMDs). The sampling sites spanned the whole reservoir from the upstream Chongqing to the great dam covering more than 600 km long distance with water flow velocities ranging from <0.05 to 1.5 m s(-1). This is the first experience of SPMD application in the biggest reservoir in the world. The results of water sampling rates based on performance reference compounds (PRC) were tested to be significantly correlated with water flow velocities in the big river. Results of back-calculated aqueous concentrations based on PRC showed obvious regional variations of PAH, PCB and OCP levels in the reservoir. Total PAH ranged from 13.8 to 97.2 ng L-1, with the higher concentrations occurring in the region of upstream and near the dam. Phenanthrene, fluoranthene, pyrene and chrysene were the predominant PAH compounds in TGR water. Total PCB ranged from 0.08 to 0.51 ng L-1, with the highest one occurring in the region near the dam. PCB 28, 52, 101, 138, 153, 180, 118 were the most abundant PCB congeners in the water. The total OCP ranged from 2.33 to 3.60 ng L-1 and the levels showed homogenous distribution in the whole reservoir. HCH, DDT and HCB, PeCB were the major compounds of OCP fingerprints. Based on water quality criteria, the TGR water could be designated as being polluted by HCB and PAH. Data on PAH, PCB and OCP concentrations found in this survey can be used as reference levels for future POP monitoring programmes in TGR. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents. The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina intermedia, and two brown algae Petalonia fascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G. intermedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia, exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. intemedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO, in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.