52 resultados para MIXED-OXIDE
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Catalytic activity of Pt catalysts for soot oxidation was studied using temperature programmed reactions. The activity of Pt loaded over TiO2-SiO2 (Pt/TiO2-SiO2) showed higher activity than other Pt/MOx systems (MOx = TiO2, ZrO2, SiO2, Al2O3. TiO2-ZrO2. TiO2-Al2O3, ZrO2-SiO2, ZrO2-Al2O3, SiO2-Al2O3). The activity was highest when the molar ratio of TiO2/(TiO2 + SiO2) ranged from 0.4 to 0.7. The effect of pretreatment with a gas containing low SO2 concentrations on the activity was compared for Pt/SiO2, Pt/TiO2 and Pt/TiO2-SiO2. In the case of Pt/TiO2-SiO2, the activity was markedly promoted by the pretreatment whereas no variation in the activity was observed for Pt/SiO2. The difference in the behavior towards the SO, pretreatment was attributed to property difference in the supports for sulfate accumulation. The high activity of Pt/TiO2-SiO2 was also confirmed under practical conditions with a diesel engine exhaust using a catalyst-supported diesel particulate filter (DPF). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The mixed oxide La2CuO4 was synthesized by four different methods and characterized with XRD, BET, TEM and low angle XRD. The effect of the synthetic method on the crystal structure, crystal size, surface area and catalytic activity to NO - CO reaction were studied. The results showed that the samples derived from different methods exhibited different activity to NO-CO reaction, the reason may be that the concentration and type of oxygen defect were different when the synthetic methods were different.
Resumo:
The mixed oxides, including YBa2Cu3O7, LaBa2Cu3O7, LaBaCu2O5, La2BaCu3O7, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, TPD and TPR method. It was found that they were the active catalysts for the NO decomposition and NO reduction by CO. The existance of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.
Resumo:
Adsorption and activation of small molecules NO, CO and CO+ NO on LaSrCuO4, La2CuO4 and La1.7Th0.3CuO4 which are typical samples in the sence of nonstoichiometric oxygen(lambda) anrong the series of La2-x(SrTh)(x)CuO4 +/-lambda mixed oxide catalysts were studied by means of MS- TPD (TPSR ), XRD, chemical analysis and so on. It was shown that the adsorption amount of NO can be correlated with the content of oxygen vacancy while the types and strength of adsorption of NO could be related to the oxidation state of the metallic ion. It was also found that CO molecule was first converted into CO32- and then desorbed in the form of CO2 at high temperature during the adsorption and desorption of CO on the mixed oxide with oxygen vacancy. The fact that the profiles of TPD(TPSR) of NO in co-adsorption of NO+CO and in single NO adsorption are similar shows that the adsorption of NO molecule not only has some priority to that of CO but also is stronger than that of CO. It seems that the adsorption of NO plays a dominate role in the activation and decomposition of NO.
Resumo:
The nitrogen oxides (NO_x) are serious pollutants in earth's atmosphere in the sensethat they are one of the main sources to cause the acid rain. The removal of NO_x is oneof the key research topics in the protection of environmen.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 were prepared and used as catalysts for the direct decomposition of NO. The catalysts were characterized by means of XRD, XPS, O-2-TPD, NO-TPD and chemical analysis. By comparing the physico-chemical properties and catalytic activity for NO decomposition, a conclusion could be drawn as follows. The direct decomposition of NO over perovskite and related mixed oxide catalysts follows a redox mechanism. The lower valent metal ions Ni2+ and disordered oxygen vacancies seem to be the active sites in the redox process. The oxygen vacancy plays an important role favorable for the adsorption and activation of NO molecules on one hand and on the other hand for increasing the mobility of lattice oxygen which is beneficial to the reproduction of active sites. The presence of oxygen vacancies is one of the indispensable factors to give the mixed oxides a steady activity for NO decomposition.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 with perovskite (ABO(3)) and related(A(2)BO(4)) structures were prepared and the adsorption property for NO and the catalytic activity for NO decomposition over these oxidse were also tested. The catalysts were characterized by means of BET surface measurement, chemical analysis, NO-TPD etc.. It was shown that the adsorption amount of NO is correlated with the concentration of oxygen vacancy formed and the adsorption type and strength of NO are related to the valence of metallic ion. Generally there are three kinds of adsorption species, NO-, NO+ and NO on the mixed oxides, among them the negative adsorpion species (NO-) are active for NO decomposition. The weaker the adsorption of oxygen on the catalyst is, the faster the mobility of oxygen is and the easier the redox process takes place in reproducing the active sites in which the oxygen species (O-, O2-) would participate.
Resumo:
Simultaneous NO reduction and CO oxidation in the presence of O-2,H2O and SO2 over Cu/Mg/AUO (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 degreesC), the presence of O-2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat, At high temperature (720 degreesC), the presence of O-2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO + CO + O-2 + H2O system had no effect on the, reaction of CO + O-2 over Cu-cat, but deactivated this catalyst for NO + CO and CO + H2O reactions; over Ce-cat, all of these reactions of NO + CO, CO + O-2 and CO + H2O were suppressed significantly; over CuCe-cat, NO + CO and CO + O-2 reactions were not affected while the reaction of CO + H2O was slightly inhibited. (C) 2002 Elsevier Science B.V. All rights reserved.