41 resultados para Load test on SPT sampler
Resumo:
Molecular dynamics (MD) simulations and first-principles calculations are carried out to analyze the stability of both newly discovered and previously known phases of ZnO under loading of various triaxialities. The analysis focuses on a graphite-like phase (FIX) and a body-centered-tetragonal phase (BCT-4) that were observed recently in [0 1 (1) over bar 0]- and [0 0 0 1]-oriented nanowires respectively under uniaxial tensile loading as well as the natural state of wurtzite (WZ) and the rocksalt (RS) phase which exists under hydrostatic pressure loading. Equilibrium critical stresses for the transformations are obtained. The WZ -> HX transformation is found to be energetically favorable above a critical tensile stress of 10 GPa in [0 1 (1) over tilde 0] nanowires. The BCT-4 phase can be stabilized at tensile stresses above 7 GPa in [0 0 0 1] nanowires. The RS phase is stable at hydrostatic pressures above 8.2 GPa. The identification and characterization of these phase transformations reveal a more extensive polymorphism of ZnO than previously known. A crystalline structure-load triaxiality map is developed to summarize the new understanding. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
通过离心机实验研究发现,在等效动冰载作用下,桶周围砂土地基发生软化或液化。当载荷幅值超过一定值时,在激振过程中桶产生了明显的沉降,桶的沉降较远处土体明显地快。由于从桶近区到远区的沉降差别,导致离桶一定距离处出现一个环状裂纹。随着载荷幅值的增加、结构重的增加和桶高的减小(桶直径相同),桶的沉降增加。
Resumo:
In the laser induced thermal fatigue simulation test on pistons, the high power laser was transformed from the incident Gaussian beam into a concentric multi-circular pattern with specific intensity ratio. The spatial intensity distribution of the shaped beam, which determines the temperature field in the piston, must be designed before a diffractive optical element (DOE) can be manufactured. In this paper, a reverse method based on finite element model (FEM) was proposed to design the intensity distribution in order to simulate the thermal loadings on pistons. Temperature fields were obtained by solving a transient three-dimensional heat conduction equation with convective boundary conditions at the surfaces of the piston workpiece. The numerical model then was validated by approaching the computational results to the experimental data. During the process, some important parameters including laser absorptivity, convective heat transfer coefficient, thermal conductivity and Biot number were also validated. Then, optimization procedure was processed to find favorable spatial intensity distribution for the shaped beam, with the aid of the validated FEM. The analysis shows that the reverse method incorporated with numerical simulation can reduce design cycle and design expense efficiently. This method can serve as a kind of virtual experimental vehicle as well, which makes the thermal fatigue simulation test more controllable and predictable. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The LY12-cz aluminium alloy sheet specimens with a central hole were tested under constant amplitude loading, Rayleigh narrow band random loading and a typical fighter broad band random loading. The fatigue life was estimated by means of the nominal stress and the Miner's rule. The stress cycles were distinguished by the rainflow count, range count and peak value count, respectively. The comparison between the estimated results and the test results was made. The effects of random loading sequence and small load cycles on fatigue life were also studied.
Resumo:
Rock mass is widely recognized as a kind of geologic body which consists of rock blocks and discontinuities. The deformation and failure of rock mass is not only determined by rock block,but also by discontinuity which is virtually more important. Mutual cutting and combination of discontinuities controlled mechanical property of rock mass. The complex cutting of discontinuities determine the intense anisotropy on mechanical property of rock mass,especially under the effect of ground stress. Engineering practice has show that the brittle failure of hard rock always occurs when its working stress is far lower than the yield strength and compressive strength,the failure always directly related to the fracture propagation of discontinuities. Fracture propagation of discontinuities is the virtue of hard rock’s failure. We can research the rock mass discontinuous mechanical properties precisely by the methods of statistical analysis of discontinuities and Fracture Mechanics. According to Superposition Principle in Fracture Mechanics,A Problem or C Problem could be chosen to research. Problem A mainly calculates the crack-tip stress field and displacement field on internal discontinuities by numerical method. Problem C calculate the crack-tip stress field and displacement field under the assumption of that the mainly rock mass stress field has been known. So the Problem C avoid the complex mutual interference of stress fields of discontinuities,which is called crack system problem in Fracture Mechanics. To solve Problem C, field test on stress field in the rock mass is needed. The linear Superposition of discontinuities strain energies are Scientific and Rational. The difference of Fracture Mechanics between rock mass and other materials can mostly expression as:other materials Fracture Mechanics mostly face the problem A,and can’t avoid multi-crack puzzle, while the Rock mass Fracture Mechanics answer to the Problem C. Problem C can avoid multi-discontinuities mutual interference puzzle via the ground stress test. On the basis of Problem C, Fracture Mechanics could be used conveniently in rock mass. The rock mass statistics fracture constitutive relations, which introduced in this article, are based on the Problem C and the Discontinuity Strain Energy linear superposition. This constitutive relation has several merits: first, it is physical constitutive relation rather than empirical; second, it is very fit to describe the rock mass anisotropy properties; third, it elaborates the exogenous factors such as ground stress. The rock mass statistics fracture constitutive relation is the available approach to answer to the physical, anisotropic and ground stress impacted rock mass problems. This article stand on the foundation of predecessor’s statistics fractures constitutive relation, and improved the discontinuity distributive function. This article had derived the limitation of negative exponential distribution in the course of regression analysis, and advocated to using the two parameter negative exponential distribution for instead. In order to solve the problems of two-dimension stability on engineering key cross-sectional view in rock mass, this article derived the rock mass planar flexibility tensor, and established rock mass two-dimension penetrate statistics fracture constitutive relation on the basis of penetrate fracture mechanics. Based on the crack tip plasticity research production of penetrate fracture, for example the Irwin plasticity equifinality crack, this article established the way to deal with the discontinuity stress singularity and plastic yielding problem at discontinuity tip. The research on deformation parameters is always the high light region of rock mass mechanics field. After the dam foundation excavation of XiaoWan hydroelectric power station, dam foundation rock mass upgrowthed a great deal of unload cracks, rock mass mechanical property gotten intricacy and strong anisotropy. The dam foundation rock mass mostly upgrowthed three group discontinuities: the decantation discontinuity, the steep pitch discontinuity, and the schistosity plane. Most of the discontinuities have got partial unload looseness. In accordance with ground stress field data, the dam foundation stress field greatly non-uniform, which felled under the great impaction of tectonic stress field, self-weight stress field, excavation geometric boundary condition, and excavation, unload. The discontinuity complexity and stress field heterogeneity, created the rock mass mechanical property of dam foundation intricacy and levity. The research on the rock mass mechanics, if not take every respected influencing factor into consideration as best as we can, major errors likely to be created. This article calculated the rock mass elastic modulus that after Xiao Wan hydroelectric power station dam foundation gutter excavation finished. The calculation region covered possession monolith of Xiao Wan concrete double-curvature arch dam. Different monolith were adopted the penetrate fracture statistics constitutive relation or bury fracture statistics constitutive relation selectively. Statistics fracture constitutive relation is fit for the intensity anisotropy and heterogeneity rock mass of Xiao Wan hydroelectric power station dam foundation. This article had contrastive analysis the statistics fracture constitutive relation result with the inclined plane load test actual measurement elastic modulus and RMR method estimated elastic modulus, and find that the three methods elastic modulus have got greatly comparability. So, the statistics fracture constitutive relations are qualified for trust. Generally speaking,this article had finished following works based on predecessors job: “Argumentation the C Problems of superposition principle in Fracture Mechanics, establish two-dimension penetrate statistics fracture constitutive relation of rock mass, argue the negative exponential distribution limitation and improve it, improve of the three-dimension berry statistics fracture constitutive relation of rock mass, discontinuity-tip plastic zone isoeffect calculation, calculate the rock mass elastic modulus on two-dimension cross-sectional view”. The whole research clue of this article inherited from the “statistics rock mass mechanics” of Wu Faquan(1992).
Resumo:
对双层堤基管涌溃堤进行了砂槽模型试验,对模型试验的流量和时间比尺进行了分析和讨论。通过有限元数值模拟,研究了管涌渍堤过程中渗流场变化的特点,分析并解释了砂槽模型试验中出现的难以理解的现象,对管涌发展机理和渗流场变化特点有了更深入的认识。
Resumo:
A closed aquatic ecosystem (CAES) was developed to stud), the effects of microgravity on the function of closed ecosystems aboard the Chinese retrieved satellite and on the spacecraft SHENZHOU-II. These systems housed a small freshwater snail (Bulinus australianus) and an autotrophic green algae (Chlorella pyrenoidosa). The results of the test on the satellite were that the concentration of algae changed little, but that the snails died during the experiments. We then sought to optimize the function of the control system, the cultural conditions and the data acquisition system and carried out an experiment on the spacecraft SHENZHOU-II. Using various sensors to monitor the CAES, real-time data regarding the operation of the CAES in microgravity was acquired. In addition, all on-board Ig centrifuge was included to identify gravity-related factors. It was found that microgravity is the major factor affecting the operation of the CAES in space. The change in biomass of the primary producer during each day in microgravity was larger than that of the control groups. The mean biomass concentration per day in the microgravity group decreased, but that of the control groups increased for several days and then leveled off. Space effects on the biomass of a primary producer may be a result of microgravity effects leading to increasing metabolic rates of the consumer combined with decreases in photosynthesis. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Phosphorus removal performance and a possible mechanism for the phosphorus removal from an eutrophic lake water were investigated using a medium-scale integrated vertical constructed wetland (combined vertical and reverse-vertical systems) from April, 11, 2001 to September, 28, 2004. Environmental factors affecting phosphorus removal and release profiles were monitored simultaneously under hydraulic loads from 400 to 2000 mm per day. The phosphorus removal rate varied with the environmental conditions. The removal rate for acidic influent water was superior to that for alkaline influent water. The substrate in the wetland chamber acted as a buffer to regulate the pH value of the water sample. As regards the water temperature, no significant differences were observed for the removal rate of total phosphorus (TP) and soluble reactive phosphorus (SRP) between low (lower than 15 degrees C) medium (16-25 degrees C) and high temperature (higher than 26 degrees C) conditions. Under a hydraulic load of 400 mm per day, the removal rate reached over 70%, the highest value achieved in this work. In addition, the highest hydraulic load of 2000 mm/d did not result in the lowest removal rate, as had been expected. After a two-year high hydraulic load test, the removal rate decreased significantly. Phosphorous release from the substrate was examined using a spatial sampling method. Depth profiles of total phosphorus and different states of phosphorus present in the substrate were recorded. This further study demonstrated that binding of phosphorus by iron and calcium might be another major factor in the removal and release of TP and SRP in this wetland system. The distribution of the speciated phosphorus showed that the amount of phosphorus captured in the substrate of the down-flow chamber was significantly higher than that captured in the up-flow chamber, suggesting that the up-flow chamber was the main source of phosphorus release in this constructed wetland.
Resumo:
从统计学角度对同一个随机性检测项目中2个独立的参数所应满足的条件进行了研究,在此基础上设计了一个假设检验方法,用于检测2个参数是否满足独立的关系。以扑克检测为实例,对其参数集中的参数进行了实验研究,并对结果进行了分析。提出的方法是一个通用的方法,可以直接应用于其他带参数的检测项目的参数关系研究中,这为随机性检测中参数选择提供了一种可操作的手段。
Resumo:
随机性检测在密码学中发挥着重要的作用,目前,已有多种不同的随机性检测算法.但是,实际应用中选择所有的检测算法进行检测不现实,选择哪些算法能够使检测充分且无冗余,这需要研究检测算法之间可能存在的关系.对两种重要的随机性检测算法二元推导和自相关进行了研究.从二者的基本原理出发,对其检测的推导过程进行了分析,结合杨辉三角的性质证明了在参数k选择为2t时,二元推导与自相关是等价的.若同时进行参数为2t的二元推导检测和自相关检测则存在冗余.同时对这个结论进行了实验验证.另外,研究还发现,在参数k选择为2t-1时,二元推导检测中推导序列的每一个比特包含初始序列的所有相关比特信息.所研究工作为实际应用中随机性检测项目和检测参数的选择提供了理论的指导.
Resumo:
统计检测在分组密码安全性评估的过程中发挥着重要的作用,许多密码标准组织纷纷把对分组密码的统计检测作为评估过程中的重要环节来实施.文中提出了一种有效、实用的统计检测方法,该统计检测方法以分组长度为统计单位,将一个分组的某一字节取遍所有的值而其它字节固定不变,经过密码变换后,将256个输出值进行异或,通过检测输出异或值每一位为0(或1)的概率是否为1/2来判断分组密码是否随机.该检测方法可以一定程度地反映出分组密码抵抗积分攻击的能力.与此同时,基于推广的积分攻击方法,文中在已有方法的基础上提出了更一般的统计检测方法.另外,文中分别对Rijndael算法、Camellia算法和SMS4算法进行了统计检测,这3种算法分别从第4轮、第5轮和第7轮开始呈现出良好的统计性能.
Resumo:
任务可调度性判定是实时系统调度理论研究的核心问题.单调速率(RM)算法是实时调度的重要算法,自其提出以来已被广泛研究.然而到目前为止,尚缺乏专题性的文章来系统而深入地探讨RM及其扩展算法的可调度性判定,以及各种现实条件和实现方式(包括任务调度的时间开销和任务同步问题等)对可调度性的影响.围绕RM算法下的可调度性判定问题,由浅入深,系统性地讨论各种不同假设和实现方式对可调度性的影响,具体分为下述3大类问题:(1)理想的RM算法下的可调度性判定的CPU利用率最小上界及可调度的充分必要条件;(2)考虑调度时间开销情况下的可调度性判定条件;(3)优先级反转协议及其对可调度性的影响.给出了具体实例来阐述上述问题,并从算法复杂度和可检测率两方面来比较各种算法的优劣.
Resumo:
对陕北黄土高原日光温室大棚蔬菜黄瓜、大青菜、油麦菜和西芹进行了叶面喷施富万钾有机钾肥的田间试验研究。结果表明,在日光温室大棚蔬菜上施用有机钾肥,黄瓜植株高度、叶片数、茎粗、叶面积、瓜长均增加。大青菜的茎粗增长44%。油麦菜的株高、茎粗、地上植株、地下根重、总生物量均明显增加。西芹的株高、茎粗、地上植株、地下根重以及总生物量增加。富万钾有机钾肥能明显促进蔬菜生长,提高产量。