137 resultados para Liquid Polymers
Resumo:
The orientational behavior of liquid crystalline polymers with para-nitro azobenzene as side chains under electric field was studied by UV-visible spectroscopy. The results showed that lambda(max) of the poled polymer films was around 394nm, compared to that of the unpoled films, the absorption decreased due to poling. The orientational parameters increased linearly with the increase of the electric field. The temporal stability of the poled polymer film is good at room temperature. This kind of materials showed promise application as nonlinear optical component in photorefractive polymers.
Resumo:
Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.
Resumo:
Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m(-1), which is 3-15 times that of polystyrene composites filled with single-walled carbon nanotubes.
Resumo:
3'-Nonafluorobutylmethyl-4'-methyl-spiro[cyclopentyl-9,1']fluorenes were successfully synthesized via tandem radical-addition reactions between 9,9-diallylfluorenes and perfluorobutyl iodide in the presence of a radical initiator followed by reduction under mild conditions. Single crystal analysis indicates that two substituents at 3,4-positions of cyclopentane are in a maleinoid form. Accordingly, four oligo(fluorene-co-bithiophene)s with the same molecular length of similar to 10 nm (7 fluorene units and 12 thiophene units) containing one to three novel spiro-fluorene units were synthesized.
Resumo:
Micro-banded textures developed from thin films of a main-chain thermotropic liquid crystalline chloro-poly(aryl ether ketone) in the melt were investigated using transmission electron microscopy (TEM). selective area electron diffraction, and atomic force microscopy techniques. The micro-banded textures were formed in the copolymer thin films after annealing at temperatures between 320 and 330degreesC, where a highly ordered smectic crystalline phase is formed without mechanical shearing. The micro-banded textures displayed a sinusoidal-like periodicity with a spacing of 150 nm and an amplitude of 2 rim. The long axis of the banded texture was parallel to the b-axis of an orthorhombic unit cell. In the convex regions, the molecular chains exhibited a homeotropic alignment, i.e. the chain direction was parallel to the film normal. In the concave re-ions, the molecular chains possessed a tilted alignment. In addition to the effects of annealing temperatures and times, the thickness of the film played a vital role in the formation of the banded texture. A possible formation mechanism of this banded texture vas also suggested and discussed. It was suggested that the micro-bands were formed during cooling.
Resumo:
The liquid crystalline properties of a mesogenic poly(1-alkyne) and the corresponding monomer were studied using transmission electron microscopy, X-ray diffraction, polarizing optical microscopy and differential scanning calorimetry. The monomer exhibits a monotropic smectic A phase and a metastable crystalline phase. The rigid polymer backbones do not prevent the mesogenic moieties from packing into smectic A and B phases in the temperature ranges 127.6 - 74.1degreesC and 74.1degreesC - room temperature, respectively, on cooling from the isotropic melt.
Resumo:
Electric-field-induced molecular alignments of side-chain liquid-crystalline polyacetylenes [-{HC=C[(CH2)(m)OCO-biph-OC7H15]}-, where biph is 4,4'-biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X-ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of]PA9EO7 was achieved within a temperature range between the isotropic-to-smectic A transition temperature and 115 degreesC, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric-field-induced molecular orientation of a side-chain liquid-crystalline polymer with a stiff backbone was studied.
Resumo:
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3-trifluoro-methylbenzene side group (F-PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK-rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G' is larger than dynamic loss modulus G", showing the feature of elastic fluid. For F-PAEK-rich systems, the rheological behavior of the blends has a resemblance to pure F-PAEK, i.e., G" is greater than G', showing the characteristic of viscous fluid. When the PEEK content is in the range of 50-70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F-PAEK content. However, at 50% weight fraction of PEEK, the viscosity-composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition.
Resumo:
The size-armed polystyrenes and poly-(methyl methacrylate)s with a triphenylene core showed different self-assembling patterns, isolated cylinders for polySt on mico and highly ordered cylindrical pores for polyMMA on a silicon water. With a decrease of polymer concentration in tetrahydrofuran (HHF), the size and height of cylinders decreased for polySt, but fur polyMMA, the size and depth of the cylindrical pores increased. Slow evaporation of the solvent and a low molecular weight favored the formation of regular patterns.
Resumo:
The experimental data of phase diagrams for both polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) binary and toluene/polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) ternary polymer-containing systems was obtained at atmosphere pressure by light scattering method. The critical points for some pre-selected compositions and the pressure effect on the phase transition behavior of ternary system were investigated by turbidity measurements. The chosen system is a mixture of ternary which is one of the very few abnormal polymer-containing systems exhibiting pressure-induced both miscibility and immiscibility. This unusual behavior is related to the toluene concentration in the mixtures. The effect of toluene on the phase transition behavior of the ternary polymer-containing mixture was traced. Such behavior can make it possible to process composite materials from incompatible polymers.
Resumo:
Mesomorphic properties of a side chain liquid crystalline polyacetylene, poly(11-{[(4'-heptyloxy-4-biphenylyl)carbonyl]oxy}-1-undecyne) (PA9EO7), are investigated using polarized optical microscope, X-ray diffraction, and transmission electron microscope. Polymer PA9EO7 forms enantiotropic smectic A and smectic B phases. It also exhibits an additional high order smectic phase, a sandwich structure consisting of different molecular packing of biphenyl mesogenic moieties from that of alkyl spacers and terminals, when it is prepared from its toluene solution. Shearing the polymer film at its smectic A phase generates banded texture with the alignment of the backbones parallel to the direction of shear force. While at its high order smectic phase, the mesogen pendants of the polymer are arranged parallel to the direction of shear. The different mesomorphic behaviors arise from different molecular alignments influenced by the fluidity.
Resumo:
Liquid crystalline properties of a mesomorphic polyacetylene {-[HC=C(CH2 )(9)OOC-Biph-OC7H15](n)- (PA9EO7), Biph=4-4'-biphenylyl} are investigated by X-ray diffraction, polarizing optical microscope, and transmission electron microscope. Polyacetylene PA9EO7 from solution adopts a sandwich structure, which is a high order smectic phase. The biphenylyl pendants pack in a hexagonal fashion and the distance between two appendages is 4.51 Angstrom. The heptyloxy tails on one polymer backbone overlap with those on the neighboring chain. The nonyl spacer and the heptyloxy tail exhibit a hexagonal packing arrangement with intermolecular distance of 3.24 Angstrom.
Resumo:
The divergent synthesis of a new carbosilane liquid-crystalline (LC) dendrimer of the first generation (D1) is described. Twelve 4-butoxyazobenzene groups are used as mesogenic fragments and attached in the periphery of the molecule. Structure and properties of D1 were characterized by element analysis, H-1 NMR, MALDI-TOF-MS, IR, UV-Vis, polarizing optical micrograph, DSC and WAXD. It is argued that mesophase of nematic type is realized. It is shown that the mesophase type of the dendrimer essentially depends on the chemical nature of the mesogenic groups. Phase behavior of D1 is K82N1331132N67K. The melting point of D1 is 30similar to43 degreesC lower than that of M5, its clearing temperature is 9 similar to 11 degreesC higher than that of M5 and its mesophase region is enlarged by 39 similar to 54 degreesC compared to that of M5. Eight extinguished brushes emanating from a stationary point are observed, corresponding to the high-strength disclination of S = + 2 of dendrimer. The clearing enthalpy of D1 is smaller than the value that is commonly found for phase transition n-i in LC and LC polymers. This may be due to the presence of branched dendrimer cores which cannot be easily deformed to fit into the anisotropic LC phase structure.
Resumo:
A main-chain nonracemic chiral liquid crystalline polymer was synthesized from (R)-(-)4'-{w-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1-decyloxyl-4-biphenylcarboxylic acid. This polymer contained 10 methylene units in each chemical repeating unit and was abbreviated PET(R*-10). On the basis of differential scanning calorimetry, wide-angle X-ray diffraction, and polarized light microscopy experiments, chiral smectic C (S-C*) and chiral smectic A (S-A*) phases were identified. Both flat-elongated and helical lamellar crystal morphologies were observed in transmission electron microscopy. Of particular interest was the flat-elongated lamellar crystals were constructed via microtwinning of an orthorhombic cell with dimensions of a = 1.42 nm, b = 1.28 nm, and c = 3.04 nm. On the other hand, the helical lamellar crystals were exclusively left-handed, which was opposite to the right-handed helical crystals grown in PET(R*-9) and PET(R*-11) (having 9 and 11 methylene units, respectively). Note that these three polymers had identical right-handed chiral centers (R*-). Therefore, a single methylene unit difference on the polymer backbones on an atomic length scale substantially changed the chirality of the crystals in the micrometer length scale. Furthermore, aggregates of these helical crystals in PET(R*-10) did not generate banded spherulites in polarized light microscopy. Possible reasons for this change and loss of helical senses (handedness) on different length scales in chirality transferring processes were discussed.