25 resultados para Learning Algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared with the ordinary adaptive filter, the variable-length adaptive filter is more efficient (including smaller., lower power consumption and higher computational complexity output SNR) because of its tap-length learning algorithm, which is able to dynamically adapt its tap-length to the optimal tap-length that best balances the complexity and the performance of the adaptive filter. Among existing tap-length algorithms, the LMS-style Variable Tap-Length Algorithm (also called Fractional Tap-Length Algorithm or FT Algorithm) proposed by Y.Gong has the best performance because it has the fastest convergence rates and best stability. However, in some cases its performance deteriorates dramatically. To solve this problem, we first analyze the FT algorithm and point out some of its defects. Second, we propose a new FT algorithm called 'VSLMS' (Variable Step-size LMS) Style Tap-Length Learning Algorithm, which not only uses the concept of FT but also introduces a new concept of adaptive convergence slope. With this improvement the new FT algorithm has even faster convergence rates and better stability. Finally, we offer computer simulations to verify this improvement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The largest damming project to date, the Three Gorges Dam has been built along the Yangtze River (China), the most species-rich river in the Palearctic region. Among 162 species of fish inhabiting the main channel of the upper Yangtze, 44 are endemic and are therefore under serious threat of global extinction from the dam. Accordingly, it is urgently necessary to develop strategies to minimize the impacts of the drastic environmental changes associated with the dam. We sought to identify potential reserves for the endemic species among the 17 tributaries in the upper Yangtze, based on presence/absence data for the 44 endemic species. Potential reserves for the endemic species were identified by characterizing the distribution patterns of endemic species with an adaptive learning algorithm called a "self-organizing map" (SOM). Using this method, we also predicted occurrence probabilities of species in potential reserves based on the distribution patterns of communities. Considering both SOM model results and actual knowledge of the biology of the considered species, our results suggested that 24 species may survive in the tributaries, 14 have an uncertain future, and 6 have a high probability of becoming extinct after dam filling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to effectively improve the classification performance of neural network, first architecture of fuzzy neural network with fuzzy input was proposed. Next a cost function of fuzzy outputs and non-fuzzy targets was defined. Then a learning algorithm from the cost function for adjusting weights was derived. And then the fuzzy neural network was inversed and fuzzified inversion algorithm was proposed. Finally, computer simulations on real-world pattern classification problems examine the effectives of the proposed approach. The experiment results show that the proposed approach has the merits of high learning efficiency, high classification accuracy and high generalization capability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate's visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orthogonal neighborhood-preserving projection (ONPP) is a recently developed orthogonal linear algorithm for overcoming the out-of-sample problem existing in the well-known manifold learning algorithm, i.e., locally linear embedding. It has been shown that ONPP is a strong analyzer of high-dimensional data. However, when applied to classification problems in a supervised setting, ONPP only focuses on the intraclass geometrical information while ignores the interaction of samples from different classes. To enhance the performance of ONPP in classification, a new algorithm termed discriminative ONPP (DONPP) is proposed in this paper. DONPP 1) takes into account both intraclass and interclass geometries; 2) considers the neighborhood information of interclass relationships; and 3) follows the orthogonality property of ONPP. Furthermore, DONPP is extended to the semisupervised case, i.e., semisupervised DONPP (SDONPP). This uses unlabeled samples to improve the classification accuracy of the original DONPP. Empirical studies demonstrate the effectiveness of both DONPP and SDONPP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对Internet多机器人系统中存在的操作指令延迟、工作效率低、协作能力差等问题,提出了多机器人神经元群网络控制模型。在学习过程中,来自不同功能区域的多类型神经元连接形成动态神经元群集,来描述各机器人的运动行为与外部条件、内部状态之间复杂的映射关系,通过对内部权值连接的评价选择,以实现最佳的多机器人运动行为协调。以互联网足球机器人系统为实验平台,给出了学习算法描述。仿真结果表明,己方机器人成功实现了配合射门的任务要求,所提模型和方法提高了多机器人的协作能力,并满足系统稳定性和实时性要求。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在多机器人系统中 ,评价一个机器人行为的好坏常常依赖于其它机器人的行为 ,此时必须采用组合动作以实现多机器人的协作 ,但采用组合动作的强化学习算法由于学习空间异常庞大而收敛得极慢 .本文提出的新方法通过预测各机器人执行动作的概率来降低学习空间的维数 ,并应用于多机器人协作任务之中 .实验结果表明 ,基于预测的加速强化学习算法可以比原始算法更快地获得多机器人的协作策略 .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

强化学习是一种重要的机器学习方法,随着计算机网络和分布式处理技术的飞速发展,多智能体系统中的分布式强化学习方法正受到越来越多的关注。论文将目前已有的各种分布式强化学习方法总结为中央强化学习、独立强化学习、群体强化学习、社会强化学习四类,然后探讨了这四类分布式强化学习方法的体系结构框架,并给出了这四类分布式强化学习方法的形式化定义。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在人工智能领域中 ,强化学习理论由于其自学习性和自适应性的优点而得到了广泛关注 随着分布式人工智能中多智能体理论的不断发展 ,分布式强化学习算法逐渐成为研究的重点 首先介绍了强化学习的研究状况 ,然后以多机器人动态编队为研究模型 ,阐述应用分布式强化学习实现多机器人行为控制的方法 应用SOM神经网络对状态空间进行自主划分 ,以加快学习速度 ;应用BP神经网络实现强化学习 ,以增强系统的泛化能力 ;并且采用内、外两个强化信号兼顾机器人的个体利益及整体利益 为了明确控制任务 ,系统使用黑板通信方式进行分层控制 最后由仿真实验证明该方法的有效性

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出了基于广义动态模糊神经网络的水下机器人直接自适戍控制方法,该控制方法既不需要预先知道模糊神经结构,也不需要预先的训练阶段,完全通过在线自适应学习算法构建水下机器人的逆动力学模型.首先,本文提出了基于这种网络结构的水下机器人直接自适应控制器,然后,利用Lyapunov稳定理论,证明了基于该控制器的水下机器人控制系统闭环稳定性,最后,采用某水下机器人模型仿真验证了该控制方法的有效性。