292 resultados para Lead germanate glasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers. C (c) 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upconversion properties of Er3+-doped heavy metal oxyfluoride germanate glasses under 975 nm excitation have been investigated. The intense green (551 and 529 nm) and relatively weak red (657 nm) emissions corresponding to the transitions S-4(3/2) -> I-4(15/2), H-2(11/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The content of PbF2 has an important influence on the upconversion luminescence emission. With increasing content of PbF2, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green emission (551 nm) increases markedly. These results suggest that PbF2 has an influence on the green (551 nm) emission more than on the green (529 nm) and red (657 nm) emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yb3+/ Er3+-codoped oxychloride germanate glasses have been synthesized by a conventional melting and quenching method. Structural properties were obtained based on Raman-spectra investigation, indicating that PbCl2 plays an important role in the formation of the glass network and has an important influence on the phonon density and the maximum phonon energy. The Judd - Ofelt intensity parameters and quantum efficiencies were calculated based on the Judd - Ofelt theory and lifetime measurements. The enhanced upconversion luminescence intensity of Er3+ with increasing PbCl2 content could not be explained only by the maximum phonon-energy change of the host glasses. For the first time, the effect of PbCl2 addition on phonon density, OH- content, and upconversion luminescence in oxychloride glasses has been discussed and evaluated. The results show that the effect of phonon density and OH- content on upconversion luminescence in oxychloride glasses is much stronger than that of the decrease of the maximum phonon energy. The possible upconversion luminescence mechanisms have also been estimated and are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+ -doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped potassium-barium-strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Based on the results of energy transfer efficiency, the optimal Yb3+/Er3+ concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 run, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New lithium-barium-lead-bismuth glasses with low OH- concentration have been obtained. The role of the different components in the glass formation has been explored from the thermal, density, and refractive index measurements. The T-g, T-x, and T-x-T-g values of these glasses are in the range of 358-400, 453-575, and 87-197 degreesC, respectively. The densities (p) and refractive indices of these glasses are mainly affected by Bi2O3 and PbO contents. A wide transmitting window from visible to infrared (IR) regions for some compositions of these glasses has been observed, which makes them appealing candidates for different optical applications such as upconverting phosphors, new laser materials, optical waveguides, and crystal-free fibre drawing. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral properties in different concentration of Yb ions (0.5-5 mol%)-doped silica glasses are explored in this paper. The glasses are prepared by traditional melting method. The absorption spectra and the fluorescent lifetime (tau(f)) are measured at room temperature and low temperature (18 K). The stimulated cross-section (sigma(emi)) and potential laser properties (beta(min), I-sat, I-min) are calculated based on the absorption spectra. The absorption cross-section (sigma(abs)) are in the range 1.08 x 10(-20) - 1.18 x 10(-20) cm(2) in different glasses, the fluorescence lifetime (tau(f)) change from 1.9 to 1.2 ms with the increase of Yb3+ concentration. The potential laser properties indicate that lead silica glass is a good host for highly Yb ion doping glass. (c) 2005 Elsevier B.V. All rights reserved.