414 resultados para Laser Induced Fluorescence
Simultaneous Laser-Induced Fluorescence And Contactless-Conductivity Detection For Microfluidic Chip
Resumo:
A combined detection system involving simultaneous LIF and contactless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conductivity detector was used in (CD)-D-4. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably. (C) 2008 Yong Yu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
Resumo:
A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.
Resumo:
A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was <5 nM, and that of the MCCD was 0.1 μM. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.
Resumo:
A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.
Resumo:
Mutation of hMLH1 gene plays an important role in human tumorigenesis. A highly sensitive single-strand conformation polymorphism (SSCP) method for detection of the T1151A mutation in exon 12 of the hMLH1 gene was for the first time developed employing laser-induced fluorescence capillary electrophoresis (LIF-CE). Effects of the concentration of linear polyacrylamide solution, running temperature, running voltage and the addition of glycerol on SSCP analysis were investigated, and the optimum separation conditions were defined. Thirty colorectal cancer patients and eight lung cancer patients were screened and the T1151A mutation was found in four of them. Based on CE-sequencing the mutation was further confirmed. To our knowledge, this is for the first time that the T1151A mutation is found in lung cancer. Our method is simple, rapid, and highly sensitive and is well suited to the analysis of large numbers of clinical samples.
Resumo:
The development of a method for determining arsenic species by capillary zone electrophoresis (CZE) with indirect laser-induced fluorescence (LIF) is described in this paper. The buffer pH, the concentration of fluorescein, the nature and the concentration of the background electrolytes (BGEs) were defined. When 2.0 mM NaHCO3 (pH 9.28) with 10(-7) M fluorescein was used as the buffer, arsenite (As(lll), dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)) were all separated from one another. The limits of detection for the four arsenic species were p p in the range of 0.12-0.54 mg/L. This method was used in the analysis of spiked arsenic species in tap and mineral water to demonstrate its usefulness. The results showed that both the recovery and the reproducibility of the developed method were acceptable.
Resumo:
Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) instead of PBS was applied as running buffers in microchip electrophoresis.
Resumo:
General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.