63 resultados para Landsat satellites
Resumo:
To increase effective load, light-weight micro-propulsion system is necessary for micro-satellites. Traditional propulsion systems including large and heavy high-pressure vessels are difficult to be scaled down to fulfill the demand of micro-satellites. In this article, a novel self-pressurizing fuel tank without high-pressure gas vessel is proposed. When some liquid propellant is consumed, pressure is compensated with CO2 released by heating NH4HCO3 powder in the fuel tank. Comparing with other types of self-pressurizing liquid fuel tank, a gas generator with special and simple structure was designed to stop or continue the NH4HCO3 decomposition reaction easily, and consumed a small amount of energy to heat the powder effectively. Performance tests showed that this new prototype is very suitable for micro-thrusters.
Resumo:
IEECAS SKLLQG
Resumo:
The large uncertainties in estimates of cropland area in China may have significant implications for major cross-cutting themes of global environmental change-food production and trade, water resources, and the carbon and nitrogen cycles. Many earlier studies have indicated significant under-reporting of cropland area in China from official agricultural census statistics datasets. Space-borne remote sensing analyses provide an alternative and independent approach for estimating cropland area in China. In this study, we report estimates of cropland area from the National Land Cover Dataset (NLCD-96) at the 1:100,000 scale, which was generated by a multi-year National Land Cover Project in China through visual interpretation and digitization of Landsat TM images acquired mostly in 1995 and 1996. We compared the NLCD-96 dataset to another land cover dataset at I-km spatial resolution (the IGBP DIScover dataset version 2.0), which was generated from monthly Advanced Very High Resolution Radiometer (AVHRR)-derived Normalized Difference Vegetation Index (NDVI) from April, 1992 to March, 1993. The data comparison highlighted the limitation and uncertainty of cropland area estimates from the DIScover dataset. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The progress of the research activities on space material sciences, microgravity ‰uid physics and combustion, space life sciences and biotechnology research, fundamental Physics in China are brie‰y summarized in the present paper. The major space missions and experimental results obtained on board the Chinese recoverable/non-recoverable satellites and the Chinese manned spaceship named ``Shen-Zhou'' are presented summarily. The recent main activities of the ground-based studies in China are introduced in brief.
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Resumo:
The efforts involved in developing a small satellite for scientific purposes in China in recent years are introduced in the present paper. The project is arranged on a case to case principle depending upon requirements and financial support. The space technology of a satellite and rockets, which have been developed over a relatively longer period in China, have been transferred to the scientific research of small satellites for improvement of the quality requirements. The surplus payloads of the rocket and satellite are used as the payloads of the small satellite and scientific experiments at a low cost. As an example, the project of balloon satellites for atmospheric research was successfully completed in 1991. The experience of the project management is of great benefit for further organization and arrangement of other projects. Opportunities exist for surplus payloads to be used in the future, and a small satellite for magnetospheric research will be launched in 1993.
Resumo:
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Resumo:
Microgravity fluid physics is an important part of microgravity sciences, which consists of simple fluids of many new systems, gas-liquid two-phase flow and heat transfer, and complex fluid mechanics. In addition to the importance of itself in sciences and applications, microgravity fluid physics closely relates to microgravity combustion, space biotechnology and space materials science, and promotes the developments of interdisciplinary fields. Many space microgravity experiments have been per- formed on board the recoverable satellites and space ships of China and pushed the rapid development of microgravity sciences in China. In the present paper, space experimental studies and the main re- sults of the microgravity fluid science in China in the last 10 years or so are introduced briefly.
Resumo:
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included groundbased tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.