191 resultados para Land degradation
Resumo:
Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.
Resumo:
Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
土地退化是危及人类生存和农业可持续发展的重大环境问题.科尔沁沙地是中国土地退化最为严重,发展速度最快的地区之一,在防治荒漠化总体布局中占有极其重要的位置.该文充分运用现代生态学原理与方法,以科尔沁沙地农牧交错带为主要研究对象,通过大量的野外调查、室内分析和资料收集,采用多学科多技术相结合、定性与定量分析相结合的技术路线,系统地研究了科尔沁沙地农牧交错带土地退化治理的关键问题.
Resumo:
简要地介绍了土壤微形态研究方法及其在农业生态与土地退化研究中的应用,并回顾了近20 a的国际土壤微形态研究的内容与进展。在过去的20 a中,土壤微形态学在概念、现象的解释、分析技术'以及应用上都取得了前所未有的进展。特别在样品脱水方法、荧光分析、图象处理及定量分析技术上得到很大的发展。植物根系与土壤微结构的关系,土壤改良对结构的影响等方面研究取得一定的成就。利用土壤微形态研究农业生态系统中的根系与根际的生态过程,作物对水分和养分的吸收过程,人为活动对土壤退化,熟化的微形态指标,以及利用微形态指标评价人为因素在现代土壤过程中的作用等,是土壤微形态研究的最新动态。
Resumo:
8 0年代以来 ,以林草地地力衰退为特征的人工林草地土壤退化日趋严重 ,其中以土壤水分严重亏缺为特征的土壤干化现象愈益引起了人们的重视。土壤干化的直接后果是形成土壤干层 ,导致土壤退化 ,植物生长速率减缓 ,群落衰败以至大片死亡 ,严重地威胁到我国北方地区特别是黄土高原地区生态环境的建设。因此 ,研究和解决土壤干层问题已成为黄土高原植被建设的迫切任务。根据延安试区的土壤水分和植被生长状况调查资料 ,初步分析了不同条件下刺槐人工林地的水分状况。结果表明 :试区刺槐人工林地普遍形成了土壤干层 ,且已相当严重 ;坡向对土壤干层有明显影响 ,阳坡形成的干层较阴坡严重 ;坡度愈大 ,土壤干化愈剧烈 ;林龄对干层严重程度影响不明显。同时 ,研究指出了解决土壤干层问题的意义。
Resumo:
通过回顾已有的成果 ,分析评价了我国土壤可蚀性研究的进展及存在的问题 ,提出我国土壤可蚀性研究中的标准小区定义。运用野外观测资料 ,研究计算了黄土高原地区土壤可蚀性指标值。结果表明 ,陕北和晋西北一带黄土可蚀性 K值变化于 0 .3~ 0 .7之间 ,并且有以陕西子洲、绥德一带为最大 ,以此为中心 ,向南、向北和向东都减少的变化趋势。
Resumo:
Soil wind erosion is the primary process and the main driving force for land desertification and sand-dust storms in and and semi-arid areas of Northern China. While many researchers have studied this issue, this study quantified the various indicators of soil wind erosion, using the GIS technology to extract the spatial data and to construct a RBFN (Radial Basis Function Network) model for Inner Mongolia. By calibrating sample data of the different levels of wind erosion hazard, the model parameters were established, and then the assessment of wind erosion hazard. Results show that in the southern parts of Inner Mongolia wind erosion hazards are very severe, counties in the middle regions of Inner Mongolia vary from moderate to severe, and in eastern are slight. Comparison of the results with other research shows conformity with actual conditions, proving the reasonability and applicability of the RBFN model. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Degradation failure features of chromium-plated gun barrels with a laser-discrete-quenched substrate
Resumo:
The effect of substrate laser-discrete quenching on the degradation failure of chromium-plated gun barrels was metallurgically investigated. The results show that substrate laser-discrete quenching changes the failure patterns of chromium coatings during firing, and some periodic through-thickness cracks in the fired chromium coatings are justly located at original substrate zones between two adjacent laser-quenched tracks. Moreover, chromium coatings and the laser-quenched zones on the substrate are simultaneously degraded in microstructure and property during firing. Furthermore, the periodic structure of the laser-discrete-quenched steel (LDQS) substrate near the breech remains after firing, and the hardness of the fired laser-quenched zones is still higher than that of original substrates. The specific failure features were utilized to illustrate the mechanism of the extended service life of chromium-plated gun barrels with the LDQS substrate. (c) 2007 Elsevier B.V All rights reserved.