182 resultados para LITHIUM EXCHANGE
Resumo:
The differential and integral cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to excited states 1s(2)2p, 1s(2)3l (l = s,p,d) and 1s(2)4l (l = s,p,d,f) at incident energies ranging from 5 eV to 25 eV are calculated by using a full relativistic distorted wave method. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbitals are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. A part of the cross sections are compared with the available experimental data and with the previous theoretical values. It is found that, for the integral cross sections, the present calculations are in good agreement with the time-independent distorted wave method calculation, for differential cross sections, our results agree with the experimental data very well.
Resumo:
A simple and feasible model feet the calculation of the gas transfer by bubble clouds is proposed in this article. N-2, O-2, and CO2 transferred by bubble clouds are obtained. At wind speed of 10 m/s, the calculated supersaturation of dissolved oxygen is 1.93-3.89% in agreement with the measurement.
Resumo:
A new two-sided model rather than the one-sided model in previous works is put forward. The linear instability analysis is performed on the Marangoni-Benard convection in the two-layer system with an evaporation interface. We define a new evaporation Biot number which is different from that in the one-sided model, and obtain the curves of critical Marangoni number versus wavenumber. The influence of evaporation velocity and Biot number on the system is discussed and a new phenomenon uninterpreted before is now explained from our numerical results.
Resumo:
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B-2(0) and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B-2(0) approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
Resumo:
On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.
Resumo:
LiFePO4 attracts a lot of attention as cathode materials for the next generation of lithium ion batteries. However, LiFePO4 has a poor rate capability attributed to low electronic conductivity and low density. There is seldom data reported on lithium ion batteries with LiFePO4 as cathode and graphite as anode. According to our experimental results, the capacity fading on cycling is surprisingly negligible at 1664 cycles for the cell type 042040. It delivers a capacity of 1170 mAh for 18650 cell type at 4.5C discharge rate. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable for electric vehicle application. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The variation of the energy interval between the intercombination line ( 1s2p(P-3(1))-> 1s(2)) and the resonance line ( 1s2p(P-1(1))-> 1s(2)) of He-like aluminium with plasma density and temperature is investigated. Since such energy interval is equivalent to the exchange energy of the state 1s2p(P-3(1)), we consider the dependence of this energy shift on the plasma environment. It was found that the shifts of exchange energy increase ( decrease) with the increase of electron density ( electron temperature), and the shifts of exchange energy become more sensitive to the electron density as the electron temperature decreases, i. e. in the strongly coupled plasma regime. An approximately linear relation is found between the shifts of exchange energy and the electron density. The results show that dense plasma effects are very important for the simulation of the spectral fine structure. The relative shifts between the intercombination ( 1s2p(P-3(1))-> 1s(2)) and the resonance line ( 1s2p(P-1(1))-> 1s(2)) are discussed for diagnostic applications.
Resumo:
Widely tunable optical parametric amplification (OPA) in the IR region through quasi-phase-matching technology is demonstrated theoretically in periodically-poled lithium niobate (PPLN). For a 532nm pump wavelength and a broadband signal wavelength near 1300 nm, we can obtain the optimum grating period from phase-matching curves for different grating periods to achieve continuously tunable OPA by tuning the angle in a small range. Tunable OPA range of 200nm near 1300 mn can be obtained with a tuning incidence signal angle of 2.2 degrees.
Resumo:
A gain amplifier for degenerated optical parametric chirped-pulse amplification (OPCPA) with lithium triborate and cesium lithium borate (CLBO) crystals was demonstrated in a near-collinear configuration, The signal gain of the final energy amplifier with CLBO was similar to 6. After compression, the 123 fs pulse duration was obtained. Compared with potassium dihydrogen phosphate, it is confirmed that CLBO is more effective as a nonlinear crystal in a final power amplifier for terawatt or petawatt OPCPA systems. To our knowledge, this is the first demonstration of OPCPA with CLBO. (c) 2006 Optical Society of America.
Resumo:
We present a theoretical model in which the band-transport equations and the coupled-wave equations are considered to study the two thermal-fixing methods (simultaneous fixing and postfixing) in Fe:LiNbO3. We found that, in simultaneous fixing, the existing ionic-grating affects the writing of the electronic grating by reduction of the coupling gain, and the grating envelope of the fixed-index grating is quite uniform inside the photorefractive crystal in comparison with the method of postfixing. The resulting diffraction efficiency of the fixed-volume grating is dependent mainly on the initial intensity modulation of the two writing beams. A set of experiments is also presented. (C) 1998 Optical Society of America.
Resumo:
We have studied theoretically the inherent mechanisms of nonvolatile holographic storage in doubly doped LiNbO3 crystals. The photochromic effect of doubly doped LiNbO3 crystals is discussed, and the criterion for this effect is obtained through the photochromism-bleach factor a = S(21)gamma(1)/S(11)gamma(2) that we define. The two-center recording and fixing processes are analytically discussed with extended Kukhtarev equations, and analytical expressions for recorded and fixed steady-state space-charge fields as well as temporal behavior during the fixing process are obtained. The effects of microphysical quantities, the macrophotochromic effect on fixing efficiency, and recorded and fixed steady-state space-charge fields, are discussed analytically and numerically. (C) 2002 Optical Society of America.
Resumo:
The routing scheme and some permutation properties of a four-shuffle-exchange-based Omega network are discussed. The corresponding optical setup, which is composed of 2-D phase spatial light modulators and calcite plates, is proposed and demonstrated through mapping the inputs to a 2-D array. Instead of one shuffle-exchange followed by one switching operation as in ordinary Omega networks, in our presented system, the shuffle interconnection embraced in the switches is accomplished simply by varying the switching structure of each stage. For the proposed polarization-optical modules, the system is compact in structure, efficient in performance, and insensitive to the environment. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A laser beam at wavelength 647 nm is focused on a sample of 5 mol% MgO-doped lithium niobate crystal for domain inversion by a conventional external electric field. In this case, a reduction of 36% in the electric field required for domain nucleation (nucleation field) is observed. To the best of our knowledge, it is the longest wavelength reported for laser-induced domain inversion. This extends the spectrum of laser inducing, and the experimental results are helpful to understand the nucleation dynamics under laser illumination. The dependence of nucleation fields on intensities of laser beams is analysed in experiments.
Resumo:
The phase contrast across the crystal thickness induced by the internal field is measured by the digital holographic interferometry just after the congruent lithium niobate crystal is partially poled. The direction of applied external field is antiparallel to that of internal field, and the measured phase contrast varies linearly with the applied external field. A new internal field is obtained by this method and named effective internal field. The distinct discrepancy between effective and equivalent internal fields is observed. The authors attribute this effect to the new macroscopic representation of elastic dipole components of defect complex in the crystal. (c) 2007 American Institute of Physics.