110 resultados para LATITUDINAL GRADIENTS
Resumo:
Latitudinal or altitudinal variation in several anatomical characters of wood is common for woody dicotyledonous genera with a wide distribution, but whether such variation exists at the species level is disputed. Latitudinal and altitudinal trends in wood anatomy of Dodonaea viscosa were studied, using 102 samples collected between 41.2degrees S and 33.3degrees N latitude and 7-2750 in altitude. We studied variation in four quantitative features: vessel element length, fiber length, vessel frequency, and tangential vessel diameter. Ontogenetic trends were minimal with a slight decrease or increase in the innermost stem and were negligible among the studied specimens. Throughout the distributional range of the species, no latitudinal trends were detected in either the Northern or Southern Hemispheres, Altitudinal trends were also nonexistent, except for two features in specimens from China and Japan. Absence of latitudinal or altitudinal trends in this widely distributed species suggests that in some species the species-level variation in wood anatomy is not controlled by ecological gradients.
Resumo:
A method of determining the micro-cantilever residual stress gradients by studying its deflection and curvature is presented. The stress gradients contribute to both axial load and bending moment, which, in prebuckling regime, cause the structural stiffness change and curving up/down, respectively. As the axial load corresponds to the even polynomial terms of stress gradients and bending moment corresponds to the odd polynomial terms, the deflection itself is not enough to determine the axial load and bending moment. Curvature together with the deflection can uniquely determine these two parameters. Both linear analysis and nonlinear analysis of micro-cantilever deflection under axial load and bending moment are presented. Because of the stiffening effect due to the nonlinearity of (large) deformation, the difference between linear and nonlinear analyses enlarges as the micro-cantilever deflection increases. The model developed in this paper determines the resultant axial load and bending moment due to the stress gradients. Under proper assumptions, the stress gradients profile is obtained through the resultant axial load and bending moment.
Resumo:
An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.
Resumo:
The depth distribution of the hole density p in 500 nm-thick (Ga,Mn)As layers is investigated. From Raman scattering spectra, it is found that the gradients of p are opposite in the as-grown and annealed layers. At the region around the free surface, with increasing etching depth, p significantly increases in the as-grown layer; however, p decreases distinctly in the annealed layer. Then, in the bulk, p becomes almost homogeneous for both cases. The etching-depth dependence of Curie temperature obtained from magnetic measurements is in agreement with the distribution characterization of p. These results suggest that annealing induces outdiffusion of Mn interstitials towards the free surface, and incomplete outdiffusion during the growth leads to an accumulation of Mn interstitials around the free surface of the as-grown (Ga,Mn)As. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The objective of this paper is to investigate the effects of channel surface wettability and temperature gradients on the boiling flow pattern in a single microchannel. The test section consists of a bottom silicon substrate bonded with a top glass cover. Three consecutive parts of an inlet fluid plenum, a central microchannel and an outlet fluid plenum were etched in the silicon substrate. The central microchannel had a width of 800 mu m and a depth of 30 mu m. Acetone liquid was used as the working fluid. High outlet vapor qualities were dealt with here. The flow pattern consists of a fluid triangle (shrinkage of the liquid films) and a connected long liquid rivulet, which is generated in the central microchannel in the timescale of milliseconds. The peculiar flow pattern is formed due to the following reasons: (1) the liquid rivulet tends to have a large contact area with the top hydrophilic channel surface of the glass cover, but a smaller contact area with the bottom silicon hydrophobic surface. (2) The temperature gradient in the chip width direction at the top channel surface of the glass cover not only causes the shrinkage of the liquid films in the central microchannel upstream, but also attracts the liquid rivulet populated near the microchannel centerline. (3) The zigzag pattern is formed due to the competition between the evaporation momentum forces at the vapor-liquid interfaces and the force due to the Marangoni effect. The former causes the rivulet to deviate from the channel centerline and the latter draws the rivulet toward the channel centerline. (4) The temperature gradient along the flow direction in the central microchannel downstream causes the breakup of the rivulet to form isolated droplets there. (5) Liquid stripes inside the upstream fluid triangle were caused by the small capillary number of the liquid film, at which the large surface tension force relative to the viscous force tends to populate the liquid film locally on the top glass cover surface.
Resumo:
The present study has attempted to investigate phase inversion and frictional pressure gradients during simultaneous vertical flow of oil and water two-phase through upward and downward pipes. The liquids selected were white oil (44 mPa s viscosity and 860 kg/m3 density) and water. The measurements were made for phase velocities varying from 0 to 1.24 m/s for water and from 0 to 1.87 m/s for oil, respectively. Experiments were carried either by keeping the mixture velocity constant and increasing the dispersed phase fraction or by keeping the continuous phase superficial velocity constant and increasing the dispersed phase superficial velocity. From the experimental results, it is shown that the frictional pressure gradient reaches to its lower value at the phase inversion point in this work. The points of phase inversion are always close to an input oil fraction of 0.8 for upward flow and of 0.75 for downward flow, respectively. A few models published in the literature are used to predict the phase inversion point and to compare the results with available experimental data. Suitable methods are suggested to predict the critical oil holdup at phase inversion based on the different viscosity ratio ranges. Furthermore, the frictional pressure gradient is analyzed with several suitable theoretical models according to the existing flow patterns. The analysis reveals that both the theoretical curves and the experimental data exhibit the same trend and the overall agreement of predicted values with experimental data is good, especially for a high oil fraction.
Resumo:
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.
Resumo:
A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria-environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4+ concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community.