28 resultados para KINETIC-ANALYSIS
Resumo:
Lipopolysaccharide ( LPS) is a major component of the outer membrane of all gram-negative bacteria. It is a heat-resistant toxin which can cause toxic shock in animals. LPS interacts with some biomolecules and triggers its toxic reaction. In this study, the interaction between LPS from Salmonella Minnesota and some biomolecules using syrface okasnib resibabce ( SPR) biosensor. biomolecules were imobilized on CM5 sensor-chip suing amion coupling method and LPS was injected over the immobilized surfaces.
Resumo:
The isothermal and non-isothermal melt-crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three-dimensional spherulite growth initiated by athermal nucleation, while under non-isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower-dimensional crystal growth, both in the isothermal and non-isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non-isothermal conditions were also calculated based on different approaches.
Resumo:
The kinetic analysis of the interaction between tumor necrosis factor(TNF) and its monoclonal antibody was performed by surface plasmon resonance(SPR) technique. The monoclonal antibody was immobilized to the surface of CM5 sensor chip by amine coupling. TNF at different concentrations was injected across the mAb immobilized surface. The interaction was recorded in real time and could be seen on the sensorgram. One cycle, including association, dissociation and regeneration, lasted no more than 15 min. The interaction results was evaluated using 1 : 1 Langmuir binding model. The kinetic rate constants were calculated to be: k =1.68 X 10(3) L (.) mol(-1) (.) s(-1), k(d) = 1.73 X 10(-4) s(-1), and the affinity constants K-A = 9. 7 X 10(3) L (.) mol(-1), K-r)= 1. 03 X 10(-7) Mol (.) L-1. The X-2 was 3.47, which showed that the interaction is consistent with the 1 : I model. We can see from the results that although there are two binding sites in one mAb molecule, TNF reacts with each site in an independent and noncooperative manner.
Resumo:
The high-resolution spectral measurements for new local vibrational modes near 714 cm-1 due to the oxygen defect in semi-insulating GaAs are analyzed on the basis of a model calculation by self-consistent bond orbital approach. Two charge states of oxygen atom with 1 and 2 extra electrons are assigned to be responsible for these local modes. The observed frequencies are explained by the properties of Ga-O-1 and Ga-O-2 bonds and the calculated cohesive energy indicates that the O-2 state is stable. The results are in good agreement with the kinetic analysis.
Resumo:
Some results on the thermal analysis of polyimides and polyaryl ether sulfones, some reactions and the purity determination of the monomers, and the thermal stability and kinetic analysis of the thermo-oxidative degradation of these polymers are described.
Resumo:
The investigation of interactions between two kinds of monoclonal antibodies and SARS virus with a label-free protein array technique were presented in this paper. The performance consists of three parts: a surface modification for ligand immobilization/surface, a protein array fabrication with an integrated microfluidic system for patterning, packaging and liquid handling, and a protein array reader of imaging ellipsometer. This revealed the technique could be used as an immunoassay for qualitative and quantitative detection as wen as kinetic analysis of biomolecule interaction.
Resumo:
郭永怀先生1953年给出的中等Reynolds数下、不可压缩流体有限长平板绕流的解析解是边界层理论中的经典工作.许多研究者对平板绕流阻力系数的郭水怀公式以及后续工作进行了评估,评估的依据是Janour与Schaaf和Sherman的实验数据.本文的动理论分析和计算表明:Schaaf和Sherman在低亚声速条件下(0.16
Resumo:
Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.
Resumo:
A new asymmetric H-shaped block copolymer (PS)(2)-PEO-(PMMA)(2) has been designed and successfully synthesized by the combination of atom transfer radical polymerization and living anionic polymerization. The synthesized 2,2-dichloro acetate-ethylene glycol (DCAG) was used to initiate the polymerization of styrene by ATRP to yield a symmetric homopolymer (Cl-PS)(2)-CHCCCCH2CH2OH with an active hydroxyl group. The chlorine was removed to yield the (PS)(2)-CHCOOCH2CH2OH ((PS)(2)-OH). The hydroxyl group of the (PS)(2)-OH, which is an active species of the living anionic polymerization, was used to initiate ethylene oxide by living anionic polymerization via DPMK to yield (PS)(2)-PEO-OH. The (PS)(2)-PEO-OH was reacted with the 2,2-dichloro acetyl chloride to yield (PS)(2)-PEO-OCCHCl2 ((PS)(2)-PEO-DCA). The asymmetric H-shaped block polymer (PS)(2)-PEO-(PMMA)(2) was prepared via ATRP of MMA at 130 degrees C using (PS)(2)-PEO-DCA as initiator and CuCl/bPy as the catalyst system. The architectures of the asymmetric H-shaped block copolymers, (PS)(2)-PEO-(PMMA)(2), were confirmed by H-1 NMR, GPC and Fr-IR.
Resumo:
An amperometric glucose biosensor was constructed based on a glassy carbon electrode modified with a Cobalt(II)hexacyanoferrate film which catalyzes electroreduction of hydrogen peroxide. Gelatin was used as immobilization matrix. Interference could be effectively eliminated by the combination of low detection potential with a Nafion coating. A low applied potential can avoid oxidation of interferences such as ascorbic acid, uric acid, p-acetyl-aminophenol, etc.. Nafion coating prevents interferences from access to the electrode surface by electrostatic repulsion. A wide linear range of detection was obtained. Analytical performance parameters are given and kinetic analysis discussed.
Resumo:
After isothermal crystallization of the amorphous poly(ether ether ketone), double endothermic behaviour can be found through differential scanning calorimetry experiments. During the heating scan of semicrystalline PEEK, a metastable melt, which comes from the melt of the thinner lamellar crystal populations, can be obtained between these two endotherms. The metastable melt can recrystallize immediately just above the lower melting temperature and form slightly thicker lamellae than the original ones. The thickness and the perfection depend upon the crystallization time and the crystallization temperature. By comparing the TEM morphological observations of the samples before and after partial melting, it can be shown that lamellar crystals, having different thermodynamic stability, form during isothermal crystallization. After partial melting, only the type of lamellar crystal exhibiting the higher thermodynamic stability remains. Wide angle X-ray diffraction measurements shows a slightly change in the crystallinity of the samples before and after the partial melting. Small angle X-ray scattering results exhibit a change in the long period of the lamellar crystals before and after the partial melting process. The crystallization kinetics of the metastable melt can be determined by means of differential scanning calorimetry. The kinetic analysis showed that the isothermal crystallization of the metastable PEEK melt proceeds with an Avrami exponent of n = 1.0 similar to 1.4, reflecting that probably one-dimensional or an irregular line growth of the crystal occurred between the existing main lamellae with heterogeneous nucleation. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Melt mixing of nylon 8 with neodymium oxide particles was carried out with a single-screw extruder. The crystal behaviors of plain nylon 6 and the neodymium oxide filled nylon 6 mixture were studied by means of isothermal crystallization kinetic analysis. Isothermal crystallization thermograms obtained by differential scanning calorimetry (DSC) were analyzed based on the Avrami equation. The neodymium oxide particles acted as a nucleating agent in the mixture. The overall rate of di-isothermal crystallization of the neodymium oxide filled nylon 6 mixture is higher than that of plain nylon 6. The mechanism and modes of plain nylon 6 were the same as those of neodymium oxide filled PA6 mixture.