192 resultados para Infra-structure of sanitation
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
In this paper, the cellular structure of a two-dimensional detonation wave in a low pressure H2/O2/Ar mixture calculated with a detailed chemical reaction model, high order scheme and high resolution grids is investigated. The regular cellular structure is produced about 1 ms after introducing perturbations in the reaction zone of a steady one-dimensional detonation wave. It is found from the present resolution study that the discrepancies concerning the structure type arising from the coarser grid employed can be resolved using a sufficiently fine grid size of 0.05 mm and below and shows a double-Mach-like strong-type configuration. During the structure evolution process, the structure configuration does not change much in the periods before and after the triple point collision. Through the triple point collision, three regular collision processes are observed and are followed by a quick change to the double-Mach-like configuration. The simulated structure tracks show that there are three different tracks associated with different triple points or the kink on the transverse wave. Comparisons with previous work and experiments indicate the presence of a strong structure for an ordinary detonation.
Resumo:
The transition from hard to soft magnetic behaviour with increasing quenching rate is shown for Nd60WAl10Fe20Co10 melt-spun ribbons with different thickness. Microstructure and magnetic domain structure of ribbons were studied by magnetic force microscopy (MFM). Particle sizes < 5 nm decreasing gradually with increasing quenching rate were deduced from topographic images which differ from large-scale magnetic domains with a periodicity of about 350 nm in all ribbons irrespective the coercivity. This indicates that the magnetic properties of the alloy are governed by interaction of small magnetic particles. It is concluded that the presence of short-range-ordered structures with a local ordering similar to the Al metastable Nd-Fe binary phase is responsible for the hard magnetic properties in samples subjected to relatively low quenching rate.
Resumo:
Magnetic domain structure of hard magnetic Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic force microscopy. In the magnetic force images it is shown that the exchange interaction type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. As the scale of the magnetic domain is much larger than the size of the short-range ordered atomic clusters existing in the BMG, it is believed that the large areas of magnetic contrast are actually a collection of a group of clusters aligned in parallel by strong exchange coupling interaction. After fully crystallization, the BMG exhibits paramagnetism. No obvious magnetic contrast is observed in the magnetic force images of fully crystallized samples, except for a small quantity of ferromagnetic crystalline phase with low coercivity and an average size of 900 nm.
Resumo:
Structure and dynamical processes of vortex dislocations in a kind of wake-type flow are described clearly by vortex lines, which are directly constructed from data of three-dimensional direct numerical simulations of the flow evolution.
Resumo:
Magnetic domain structure of Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic-force microscopy. In the magnetic-force images it is shown that the exchange-interaction-type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. The existence of the large-scale domains demonstrates that the magnetic moments of a great deal of short-scale ordered atomic clusters in the BMG have been aligned by exchange coupling. Annealing at 715 K leads to partial crystallization of the BMG. However, the exchange coupling is stronger in the annealed sample, which is considered to arise from the increase of transition-metal concentration in the amorphous phase due to the precipitation of Nd crystalline phase.
Resumo:
Regular zinc oxide (ZnO) tetrapods with a flat plane have been obtained on Si(1 0 0) substrate via the chemical vapour deposition approach. The x-ray diffraction result suggests that these tetrapods are all single crystals with a wurtzite structure that grow along the (0 0 0 1) direction and corresponding electron backscatter diffraction analysis reveals the crystal orientation of growth and exposed surface. Furthermore, we find some ZnO tetrapods with some legs off and the angles between every two legs are measured with the aid of scanning electron microscopy and image analysis, which benefit to reveal the structure of ZnO tetrapods joint. The structure model and growth mechanism of ZnO tetrapods are proposed. Besides, the stable model of the interface was obtained through the density-functional theory calculation and the energy needed to break the twin plane junction was calculated as 5.651 J m(-2).
Resumo:
Scanning electron microscopic (SEM) moire method was used to study the surface structure of three kinds of butterfly wings: Papilio maackii Menetries, Euploea midamus (Linnaeus), and Stichophthalma how-qua (Westwood). Gratings composed of curves with different orientations were found on scales. The planar characteristics of gratings and some other planar features of the surface structure of these wings were revealed, respectively, in terms of virtual strain. Experimental results demonstrate that SEM moire method is a simple, nonlocal, economical, effective technique for determining which grating exists on one whole scale, measuring the dimension and the whole planar structural character of the grating on each scale, as well as characterizing the relationship between gratings on different scales of each butterfly wing. Thus, the SEM moire method is a useful tool to assist with characterizing the structure of butterfly wings and explaining their excellent properties. (c) 2007 Optical Society of America.
Resumo:
This paper extends two-dimensional model of symmetric magnetostatic flux arches confined in stratified atmospheres (Zhang and Hu, 1992, 1993) to asymmetric models. Numerical results show that the flux structure is influenced greatly by the boundary condition of magnetic field, the force-free factor, the atmospheric pressure distribution and the position of footpoints (especially the width ratio of outlet to entrance, which differs from symmetric case).
Resumo:
We discuss the transversal heteroclinic cycle formed by hyperbolic periodic pointes of diffeomorphism on the differential manifold. We point out that every possible kind of transversal heteroclinic cycle has the Smalehorse property and the unstable manifolds of hyperbolic periodic points have the closure relation mutually. Therefore the strange attractor may be the closure of unstable manifolds of a countable number of hyperbolic periodic points. The Henon mapping is used as an example to show that the conclusion is reasonable.
Resumo:
The hierarchial structure and mathematical property of the simplified Navier-Stokesequations (SNSE) are studied for viscous flow over a sphere and a jet of compressible flu-id. All kinds of the hierarchial SNSE can be divided into three types according to theirmathematical property and also into five groups according to their physical content. Amultilayers structure model for viscous shear flow with a main stream direction is pre-sented. For the example of viscous incompressible flow over a flat plate there existthree layers for both the separated flow and the attached flow; the character of thetransition from the three layers of attached flow to those of separated flow is elucidated.A concept of transition layer being situated between the viscous layer and inviscidlayer is introduced. The transition layer features the interaction between viscous flow andinviscid flow. The inner-outer-layers-matched SNSE proposed by the present author inthe past is developed into the layers matched (LsM)-SNSE.
Resumo:
By means of the matched asymptotic expansion method with one-time scale analysis we have shown that the inviscid geostrophic vortex solution represents our leading solution away from the vortex. Near the vortex there is a viscous core structure, with the length scale O(a). In the core the viscous stresses (or turbulent stresses) are important, the variations of the velocity and the equivalent height are finite and dependent of time. It also has been shown that the leading inner solutions of the core structure are the same for two different time scales of S/(ghoo)1/2 and S/a (ghoo)1/2. Within the accuracy of O(a) the velocity of a geostrophic vortex center is equal to the velocity of the local background flow, where the vortex is located, in the absence of the vortex. Some numerical examples demonstrate the contributions of these results.
Resumo:
A mantle plume is understood as a hot, narrow, upwelling flow in the earth's mantle and accompanied by an efficient transfer of mass and energy from deep to upper layer of the earth. The cylindrical plume in earth's mantle plays an important role in explaining the origin of the surface hot spots and linear island chains. From the basic hydrodynamical equations, the detailed mechanical and thermal structure of a cylindrical plume of Newtouian fluids with temperature and pressure-dependent viscosity are given in the present paper. For two sets of rheological parameters the radial profiles of upward velocity, temperature and viscosity in the plume and radiuses of the plume at various depths have been calculated.
Resumo:
On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been obtained (pages 213–218, this issue), the problem of determining the lateral structure of the plume at a given depth is reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity, temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume, δT/L 1 (L = the height of the plume, δT = lateral distance from the mid-plane), can be satisfied, except for the starting region of the plume or near the base of the lithosphere. At the lateral distance, δT, the upward velocity decreases to 0.1 – 50% of its maximum value at different depths. It is believed that this model may provide an approach for a quantitative description of the detailed structure of a mantle plume.
Resumo:
The magnetospheric structure of a pulsar is discussed for a non-force-free magnetic field. The local solution to the axisymmetric equations of the pulsar is obtained by the method of expanding in the polar angle. Particular attention is given to the solutions near the polar axis and the equator. Near the pulsar surface, the magnetic field energy density is found to be larger than the other energy components; the gravitational potential and the kinetic energy are relatively larger far away from the pulsar surface. It is shown that these relations influence the mass distribution in the pulsar magnetosphere. The results also show that the plasma rotation may be nonrigid and, hence, that a corotational region with a closed magnetic field may not exist.