204 resultados para Inference Technique
Resumo:
Measurement while drilling (MWD) has become a popular survey technology to monitor directional data, drilling data, formation evaluation data and safety data in the world. And closed loop drilling shows promise in recent years. Obviously, the method of tr
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.
Resumo:
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.
Resumo:
The aggregation behaviors of two surfactants with the same hydrophobic tail, sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP), have been investigated by the fluorescence technique and z-potential (ζ) measurements. Five fine peaks of the pyrene molecule fluorescence spectroscopy appear in the surfactant solution, and the micropolarity at which pyrene locates is monitored from the intensity ratio of the first (I1) and the third peak (I3). A wide peak around 475 nm, the emission spectra of the excimer of pyrene molecules, is observed in the NaDEHP solution, while this is not found for the AOT system. The value of I1/I3 decreases in a more limited concentration range for the AOT system than for NaDEHP, indicating that small aggregates can be more easily formed by NaDEHP molecules. The z-potential results for the aggregates formed by the two surfactants show that the interaction between AOT and PVP is stronger than that between NaDEHP and PVP.
Resumo:
In this paper, a nano-moiré fringe multiplication method is proposed, which can be used to measure nano-deformation of single crystal materials. The lattice structure of Si (111) is recorded on a film at a given magnification under a transmission microscope, which acts as a specimen grating. A parallel grating (binary type) on glass or film is selected as a reference grating. A multiplied nano-moiré fringe pattern can be reproduced in a 4f optical filter system with the specimen grating and the prepared reference grating. The successful results illustrate that this method can be used to measure deformation in nanometre scale. The method is especially useful in the measurement of the inhomogeneous displacement field, and can be utilized to characterize nano-mechanical behaviour of materials such as dislocation and atomic bond failure.
Resumo:
The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.
Resumo:
Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.
Resumo:
Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.
Resumo:
Adopting Yoshizawa's two-scale expansion technique, the fluctuating field is expanded around the isotropic field. The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.
Resumo:
The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.
Resumo:
It is proposed that single attosecond pulses be generated via high-order harmonic generation by using a two-color pump pulse with time dependent ellipticity. The two-color pump pulse is created by the fundamental field and its second harmonic: the fundamental field is left-circularly polarized and the second harmonic is right-circularly polarized. Numerical simulations show that single attosecond pulses can be produced in the cut-off region by using the synthesis of 20 fs left-hand and right-hand circularly polarized pulses with a pulse delay of 20 fs. The attosecond pulses produced this way are much stronger than that produced by a few-cycle linear polarized pulse of comparable intensity. (c) 2005 Optical Society of America