92 resultados para Industrial sites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured noninvasively step velocities of elementary two-dimensional (2D) islands on {110} faces of tetragonal lysozyme crystals, under various supersaturations, by laser confocal microscopy combined with differential interference contrast microscopy. We studied the correlation between the effects of protein impurities on the growth of elementary steps and their adsorption sites on a crystal surface, using three kinds of proteins: fluorescent-labeled lysozyme (F-lysozyme), covalently bonded dimers of lysozyme (dimer), and a 18 kDa polypeptide (18 kDa). These three protein impurities suppressed the advancement of the steps. However, they exhibited different supersaturation dependencies of the suppression of the step velocities. To clarify the cause of this difference, we observed in situ the adsorption sites of individual molecules of F-lysozyme and fluorescent-labeled dimer (F-dimer) on the crystal surface by single-molecule visualization. We found that F-lysozyme adsorbed preferentially on steps (i.e., kinks), whereas F-dimer adsorbed randomly on terraces. Taking into account the different adsorption sites of F-lysozyme and F-dimer, we could successfully explain the different effects of the impurities on the step velocities. These observations strongly suggest that 18 kDa also adsorbs randomly on terraces. Seikagaku lysozyme exhibited a complex effect that could not alone be explained by the two major impurities (dimer and 18 kDa) present in Seikagaku lysozyme, indicating that trace amounts of other impurities significantly affect the step advancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, the effect of Na+ on crystal structure, valence state of Yb ions, spectroscopic properties of YbF3-doped CaF2 system was systematically studied. Na+ can greatly suppress the deoxidization of Yb3+ to Yb2+. Absorption and emission spectra showed codoping Na+ with different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in CaF2 lattice in a large scope. The emission lifetime and quantum efficiency of Yb3+ in CaF2 were greatly enhanced by the codopant of Na+. The potential laser performances of the new Yb, Na-codoped CaF2 crystals were predicted. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manu National Park of southern Peru is one of the most renowned protected areas in the world, yet large-bodied vertebrate surveys conducted to date have been restricted to Cocha Cashu Biological Station, a research station covering <0.06 percent of the 1.7Mha park. Manu Park is occupied by >460 settled Matsigenka Amerindians, 300-400 isolated Matsigenka, and several, little-known groups of isolated hunter-gatherers, yet the impact of these native Amazonians on game vertebrate populations within the park remains poorly understood. On the basis of 1495 km of standardized line-transect censuses, we present density and biomass estimates for 23 mammal, bird, and reptile species for seven lowland and upland forest sites in Manu Park, including Cocha Cashu. We compare these estimates between hunted and nonhunted sites within Manu Park, and with other Neotropical forest sites. Manu Park safeguards some of the most species-rich and highest biomass assemblages of arboreal and terrestrial mammals ever recorded in Neotropical forests, most likely because of its direct Andean influence and high levels of soil fertility. Relative to Barro Colorado Island, seed predators and arboreal folivores in Manu are rare, and generalist frugivores specializing on mature fruit pulp are abundant. The impact of such a qualitative shift in the vertebrate community on the dynamics of plant regeneration, and therefore, on our understanding of tropical plant ecology, must be profound. Despite a number of external threats, Manu Park continues to serve as a baseline against which other Neotropical forests can be gauged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on sleep-related behaviors were collected for a group of central Yunnan black crested gibbons (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China from March 2005 to April 2006. Members of the group usually formed four sleeping units (adult male and juvenile, adult female with one semi-dependent black infant, adult female with one dependent yellow infant, and subadult male) spread over different sleeping trees. Individuals or units preferred specific areas to sleep; all sleeping sites were situated in primary forest, mostly (77%) between 2,200 and 2,400 m in elevation. They tended to sleep in the tallest and thickest trees with large crowns on steep slopes and near important food patches. Factors influencing sleeping site selection were (1) tree characteristics, (2) accessibility, and (3) easy escape. Few sleeping trees were used repeatedly by the same or other members of the group. The gibbons entered the sleeping trees on average 128 min before sunset and left the sleeping trees on average 33 min after sunrise. The lag between the first and last individual entering the trees was on average 17.8 min. We suggest that sleep-related behaviors are primarily adaptations to minimize the risk of being detected by predators. Sleeping trees may be chosen to make approach and attack difficult for the predator, and to provide an easy escape route in the dark. In response to cold temperatures in a higher habitat, gibbons usually sit and huddle together during the night, and in the cold season they tend to sleep on ferns and/or orchids.