180 resultados para IMAGE SEQUENCES
Resumo:
A novel spatiotemporal segmentation technique is further developed for extracting uncovered background and moving objects from the image sequences, then the following motion estimation is performed only on the regions corresponding to moving objects. The frame difference contrast (FCON) and local variance contrast (LCON), which are related to the temporal and spatial homogeneity of the image sequence, are selected to form the 2-D spatiotemporal entropy. Then the spatial segmentation threshold is determined by maximizing the 2-D spatiotemporal entropy, and the temporal segmentation point is selected to minimize the complexity measure for image sequence coding. Since both temporal and spatial correlation of an image sequence are exploited, this proposed spatiotemporal segmentation technique can further be used to determine the positions of reference frames adaptively, hence resulting in a low bit rate. Experimental results show that this segmentation-based coding scheme is more efficient than usual fixed-size coding algorithms. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
本文提出了一项新技术,它可以实现从任意的图像序列中自动提炼出简洁的表达方式,以便进行高效的视觉通信.我们认为,视觉通信的全过程可分为视频数据的传输和人眼对视觉信号的理解两个阶段.因此,本文以心理学中人对图像的认知规律的相火理论为指导,专注于研究如何同时提高图像的可压缩性和可理解性.我们借助一个缘提取算法来保留对人的视觉系统最为敏感的物体边界,再用一个非线性扩散算法减弱无足轻重的细节信号.为了使最终生成的动画保持时间上的一致性,本文的技术方案是在骼个时空域上没计的.而我们依然能够保持实时的处理速度,因为该方法可以方便地使用GPU作并行计算.为了演示新技术的实用性,我们还建立了一个以本文算法作为处理内核的完整的视觉通信系统并在该系统进行所有实验.统计数据表明,本文方法不仅可以明显地降低传输带宽,而且提高了图像序列的可理解性.
Resumo:
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed. Two experiments into the use of the radar system were carried out at two sites, respectively, for calibration process in Zhangzi Island of the Yellow Sea, and for validation in the Yellow Sea and South China Sea. Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method. The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy. The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy. In particular, it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters, especially in detecting the significant wave height below 1.0 m.
Resumo:
本文针对显微视觉的图像恢复与3D 重建问题,从显微光学成像的离焦机理和基于点扩散函数的图像模糊化描述出发,通过模糊测度算子分析序列显微图像的离焦分布规律,提出了一种用于构建较为精准离焦模型的方法。该模型采用混合参数多项式结构,与传统高斯模型相比,可以更接近真实离焦过程,这为较为精确的光学显微图像恢复和3D 重构提供了新的技术途径。
Resumo:
传统的火灾检测方法一般采用感烟、感温、感光探测器等进行探测。本文提出了一种嵌入式基于图像视觉特征的火灾检测方法,以TI公司的数字多媒体处理器TMS320DM642为核心,设计实现智能前端火灾探测与自动报警系统。通过DM642对视频图像进行采集并结合相应的智能图像处理与模式识别算法,对森林火险进行实时监控。实验结果表明,该系统比传统系统更进一步减少了误报率且具有响应快、监控范围广等优点。
Resumo:
对薄板成形应变场传统的测量方法进行了研究,指出了其不足和误差的来源,提出了数字图像分析法测量薄板成形中的应变场,对测量原理、新的测量方法对传统方法的改进,以及如何降低误差进行了介绍,指出数字图像分析法的前景,提出了改进意见。
Resumo:
A new particle image technique was developed to analyze the dispersion of tracer particles in an internally circulating fluidized bed (ICFB). The movement course and the concentration distribution of tracer particles in the bed were imaged and the degree of inhomogeneity of tracer particles was analyzed. The lateral and axial dispersion coefficients of particles were calculated for various zones in ICFB. Results indicate that the lateral diffusion coefficient in the fluidized bed with uneven air distribution is significantly higher than that in uniform bubbling beds with even air distribution. The dispersion coefficients are different along bed length and height.
Resumo:
A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.
Resumo:
Recurrence plot technique of DNA sequences is established on metric representation and employed to analyze correlation structure of nucleotide strings. It is found that, in the transference of nucleotide strings, a human DNA fragment has a major correlation distance, but a yeast chromosome's correlation distance has a constant increasing. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.
Resumo:
We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.
Resumo:
For the purpose of human-computer interaction (HCI), a vision-based gesture segmentation approach is proposed. The technique essentially includes skin color detection and gesture segmentation. The skin color detection employs a skin-color artificial neural network (ANN). To merge and segment the region of interest, we propose a novel mountain algorithm. The details of the approach and experiment results are provided. The experimental segmentation accuracy is 96.25%. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We theoretically demonstrate that enhanced penetration depth in three-dimensional multiphoton microscopy can be achieved using concentric two-color two-photon (C2C2P) fluorescence excitation in which the two excitation beams are separated in space before reaching their common focal spot. Monte Carlo simulation shows that, in comparison with the one-color two-photon excitation scheme, the C2C2P fluorescence microscopy provides a significantly greater penetration depth for imaging into a highly scattering medium. (C) 2008 Optical Society of America.