100 resultados para Host donor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-photon absorption (3PA) of two fluorene-based molecules with D-pi-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140 x 10(-78) cm(6) s(2) for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Delta p(1)/Delta p(2)/Delta p(1)'. (c) 2005 Elsevier B.V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of benzothiazole-containing fluorene molecules have been designed and their one- and two-photon absorption properties have been investigated theoretically by using the ZINDO method. The effects of electron-excessive/deficient heterocyclic bridges as auxiliary donors (auxD)/acceptors (auxA) on TPA cross-sections were studied. The results show that the molecules with D-pi-auxA-A, D-aux D-pi-A, or D-auxD-pi-auxA-A structure types have large TPA cross-section, which can be a valuable strategy in the design of two-photon absorption materials. Also, a linear relationship between the first hyperpolarizability and the TPA cross-section is observed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upconversion luminescence properties of Yb3+/Tm3+-codoped oxyfluoride tellurite glasses under 980 nm excitation are investigated experimentally. The intense blue and relatively weak red emissions centered at 475 and 649 nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The effect of PbF2 on upconversion intensity is observed and discussed, and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Yb3+/Tm3+-codoped oxyfluoride tellurite glasses may be a potentially useful material for developing blue upconversion optical devices. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upconversion properties of Er3+-doped heavy metal oxyfluoride germanate glasses under 975 nm excitation have been investigated. The intense green (551 and 529 nm) and relatively weak red (657 nm) emissions corresponding to the transitions S-4(3/2) -> I-4(15/2), H-2(11/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The content of PbF2 has an important influence on the upconversion luminescence emission. With increasing content of PbF2, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green emission (551 nm) increases markedly. These results suggest that PbF2 has an influence on the green (551 nm) emission more than on the green (529 nm) and red (657 nm) emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped oxyfluoride germanate glasses have been synthesized by the conventional melting and quenching method. The Judd-Ofelt intensity parameters were calculated based on the Judd-Ofelt theory and absorption spectra measurements. With the substitution of PbF2 for PbO, the Omega(2) parameter decreases, while the Omega(6) parameter increases. These change trends indicate that fluoride anions come to coordinate erbium cations and the covalency of the Er-O bond decreases. Structural and thermal stability properties were obtained by Raman spectra and differential thermal analysis, indicating that PbF2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. With increasing PbF2 content, the intensity of red (657nm) emissions increases significantly, while that of the green (525 and 546nm) emission increases slightly. The results indicate that PbF, has more influence on the red (657nm) emission than the green (525 and 546nm) emissions in oxyfluoride germanate glasses. The possible upconversion luminescence mechanisms have also been estimated and discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the room-temperature continuous-wave (CW) operation of a Ho:YAlO3 laser that is resonantly end pumped at 1.94 mu m by a diode-pumped thulium-doped laser in the same host. Through the use of a 1 at % Ho3+-doped 20-mm-long YAlO3 crystal (b cut), the Ho:YAlO3 laser generated 1 W of linearly polarized (E//c) output at 2118 nm and 0.55 W of E//a output at 2128.5 nm for an incident pump power of 5 W, with an output coupler transmission of 14 and 3%, respectively. An optical-to-optical conversion efficiency of 20% and a slope efficiency of 33% were achieved at 2118 nm corresponding to an incident pump power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for DNA isolation from early development of blastocyst and further analysis of nuclear and mitochondrial DNA was developed in present study. Total DNA was prepared from interspecies reconstructed blastocyst and a giant panda specific microsatellite locus g(010) was successfully amplified. DNA sequencing of the PCR product showed that two sequences of reconstructed blastocysts are the same as that of positive control giant panda. Our results prove that the nucleus of interspecies reconstructed blastocyst comes from somatic nucleus of donor giant panda.