162 resultados para HOMOGENEOUS COPOLYMERS
Resumo:
In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/alpha-olefin copolymers was studied by atomic force microscopy (AFM) and the thermal-fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular-like morphology, and the mixed morphology was observed after stepwise crystallization from phase-separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal-fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean (L) over bar (n), the weight mean (L) over bar (w), and the broadness index I = (L) over bar (w)/(L) over bar (n). It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal-fractionation technique. The effects of temperature range, temperature-dependent specific heat capacity C-p of copolymer, and the molecular weight on the results of thermal fractionation were discussed,
Resumo:
In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.
Resumo:
Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.
Resumo:
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively.
Resumo:
Shear may shift the phase boundary towards the homogeneous state (shear induced mixing, SIM), or in the opposite direction (shear induced demixing, SID). SIM is the typical behavior of mixtures of components of low molar mass and polymer solutions, SID can be observed with solutions of high molar mass polymers and polymer blends at higher shear rates. The typical sequence with increasing shear rate is SIM, then occurrence of an isolated additional immiscible area (SLD), melting of this island into the main miscibility gap, and finally SIM again. A three phase line originates and ends in two critical end points. Raising pressure increases the shear effects. For copolymer containing systems SID is sometimes observed at very low shear rates, preceding the just mentioned sequence of shear influences.
Resumo:
Copolymers based on monomers phenolphthalein (PP)/4,4'-thiodiphenol (Bis-T)/4,4'-dichlorodiphenylsulfone (DCDPS) were prepared by a route involving the toluene, N-methyl-2-pyrrolidone and anhydrous potassium carbonate synthesis. The range of optimum reaction temperature was between 185 and 195 degrees C. The copolymers were characterized by C-13 NMR, differential scanning calorimetry (DSC) and torsion braid analysis. It was found that all of the copolymers were random and homogeneous and their glass transition temperatures (T-g) decreased linearly with an increase of Bis-T contents in the copolymers. The thermal stability determined by thermogravimetry analysis in air atmosphere indicated that the copolymer had better resistance to thermo-oxidative degradation. Dynamic mechanical measurement showed that (PP/Bis-T) PES copolymers containing 0-50 mol% of Bis-T components had two secondary relaxations. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Graft copolymers of polyethylene (PE) with polyisoprene (PI) were synthesized through polymerization of ethylene in toluene solution of PI (cis-1,4-: 95%; 3,4-: 5%) using a homogeneous V(acac)3/Et3Al2Cl3 catalyst. Copolymers are formed when the growing po
Resumo:
We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.
Resumo:
The structural evolution of the ordered N-N' dibutyl-substituted quinacridone (QA4C) multilayers (3 MLs) has been monitored in situ and in real time at various substrate temperatures using low energy electron diffraction (LEED) during organic molecular beam epitaxy (MBE). Experimental results of LEED patterns clearly reveal that the structure of the multilayer strongly depends on the substrate temperature. Multilayer growth can be achieved at the substrate temperatures below 300 K, while at the higher temperatures we can only get one ordered monolayer of QA4C. Two kinds of structures, the commensurate and incommensurate one, often coexist in the QA4C multilayer. With a method of the two-step substrate temperatures, the incommensurate one can be suppressed, and the commensurate, on the other hand, more similar to the (001) plane of the QA4C bulk crystal, prevails with the layer of QA4C increasing to 3 MLs. The two structures in the multilayers are compressed slightly in comparison to the original ones in the first monolayer.