22 resultados para Graphic methods
Resumo:
小尺寸目标跟踪是视觉跟踪中的难题。该文首先指出了均值移动小尺寸目标跟踪算法中的两个主要问题:算法跟踪中断和丢失跟踪目标。然后,论文给出了相应的解决方法。对传统Parzen窗密度估计法加以改进,并用于对候选目标区域的直方图进行插值处理,较好地解决了算法跟踪中断问题。论文采用Kullback-Leibler距离作为目标模型和候选目标之间的新型相似性度量函数,并推导了其相应的权值和新位置计算公式,提高了算法的跟踪精度。多段视频序列的跟踪实验表明,该文提出的算法可以有效地跟踪小尺寸目标,能够成功跟踪只有6×12个像素的小目标,跟踪精度也有一定提高。
Resumo:
针对经典形状上下文算法对物体关节相对位置变化敏感的缺点,提出一种基于剪影局部形状填充率的物体识别算法.该算法以物体不同的轮廓控制点为圆心,计算不同半径下物体剪影像素所占总像素的比例,即为控制点的局部形状填充率;将不同控制点、不同半径长度所计算的形状填充率数值构成一个特征矩阵,该矩阵反映了物体整个剪影的统计特性.通过不同数据库的实验结果表明,文中算法对物体的细节有很强的描述能力,对物体关节的相对位置不敏感,并且受剪影轮廓控制点数量影响小.
Resumo:
The effectiveness of Oliver & Pharr's (O&P's) method, Cheng & Cheng's (C&C's) method, and a new method developed by our group for estimating Young's modulus and hardness based on instrumented indentation was evaluated for the case of yield stress to reduced Young's modulus ratio (sigma(y)/E-r) >= 4.55 x 10(-4) and hardening coefficient (n) <= 0.45. Dimensional theorem and finite element simulations were applied to produce reference results for this purpose. Both O&P's and C&C's methods overestimated the Young's modulus under some conditions, whereas the error can be controlled within +/- 16% if the formulation was modified with appropriate correction functions. Similar modification was not introduced to our method for determining Young's modulus, while the maximum error of results was around +/- 13%. The errors of hardness values obtained from all the three methods could be even larger and were irreducible with any correction scheme. It is therefore suggested that when hardness values of different materials are concerned, relative comparison of the data obtained from a single standard measurement technique would be more practically useful. It is noted that the ranges of error derived from the analysis could be different if different ranges of material parameters sigma(y)/E-r and n are considered.
Resumo:
Imaging ellipsometry was combined with electrochemical methods for studying electrostatic interactions of protein and solid surfaces. The potential of zero charge for gold-coated silicon wafer/solution interfaces wad determined by AC impedance method. The potential of the gold-coated silicon wafer was controlled at the potential of zero charge, and the adsorption of fibrinogen on the potential-controlled and non-controlled surfaces was measured in real time at the same time by imaging ellipsometry The effect of electrostatic interaction was studied by comparing the difference between the potential of controlled adsorption and the Potential of noncontrolled adsorption. It was shown that the rate of fibrinogen adsorption on the potentiostatic surface was faster than that on the nonpotentiostatic surface. The electrostatic influence on fibrinogen adsorption on the gold-coated silicon wafer was weak, so the hydrophobic interaction should be the major affinity.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.
Resumo:
气液两相流体系是一个复杂的多变量随机过程体系,流型的定义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的重点内容。本文就与气液两相流流型及其判别有关的研究状况进行了回顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态和趋势。
Resumo:
给出相对论力学中普遍定律的实用判别法和协变集的实用构造法,还给出实现非普遍定律的“可导出性”的一种实用方法.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and “hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.
Resumo:
The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the issues of modeling, numerical methods, and simulation with comparison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The mathematical model is based on the assumption of one-dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and the wall friction force on both phases being ignored. The model consists of a set of coupled differential equations describing the conservation of mass and momentum in both phases with coupling and interaction between the two phases. We demonstrate conditions under which the system is either mathematically well posed or ill posed. We consider the general model with additional physical viscosities and/or additional virtual mass forces, both of which stabilize the system. Two numerical methods, one of them is first-order accurate and the other fifth-order accurate, are used to solve the models. A change of variable technique effectively handles the changing domain and boundary conditions. The numerical methods are demonstrated to be stable and convergent through careful numerical experiments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared with experimental data. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a "hold" period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and "hold-at-the-maximum-indenter-displacement" for determining the instantaneous modulus using spherical indenters.
Resumo:
Fuzzy reliability methods are used to study the corrosion of pipelines. Three methods are used. They consist of using fracture failure modes, failure assessment diagram (FAD) and residual strength for establishing fuzzy reliability. Calculations are made by application of JC, improved GA-JC and Mente-carlo methods. Examples for oilfield injecting water pipeline show the residual strength well agree with field data. Mente-carlo methods appear to yield results that have better agreement with field data.
Resumo:
In this paper, common criterions about residual strength evaluation at home and abroad are generalized and seven methods are acquired, namely ASME-B31G, DM, Wes-2805-97, CVDA-84, Burdekin, Irwin and J integral methods. BP neural network are Combined with Genetic Algorithm (GA) named by modified BP-GA methods to successfully predict residual strength and critical pressure of injecting water, corrosion pipelines. Examples are shown that calculation results of every kind of method have great difference and calculating values of Wes-2805-97 criterion, ASME-B31G criterion, CVDA-84 criterion and Irwin fracture mechanics model are conservative and higher than, those of J integral methods while calculating values of Burdiken model and DM fracture mechanics model are dangerous and less than those of J integral methods and calculating values of modified BP-GA methods are close and moderate to those of J integral methods. Therefore modified BP-GA methods and J integral methods are considered better methods to calculate residual strength and critical pressure of injecting water corrosion pipelines
Resumo:
Validated by comparison with DNS, numerical database of turbulent channel flows is yielded by Large Eddy Simulation (LES). Three conventional techniques: uv quadrant 2, VITA and mu-level techniques for detecting turbulent bursts are applied to the identification of turbulent bursts. With a grouping parameter introduced by Bogard & Tiedemann (1986) or Luchik & Tiederman (1987), multiple ejections detected by these techniques which originate from a single burst can be grouped into a single-burst event. The results are compared with experimental results, showing that all techniques yield reasonable average burst period. However, uv quadrant 2 and mu-level are found to be superior to VITA in having large threshold-independent range.