95 resultados para Game Theoretical Model
Resumo:
An improved electromechanical model of the RF MEMS (radio frequency microelectromechanical systems) switches is introduced, in which the effects of intrinsic residual stress from fabrication processes, axial stress due to stretching of beam, and fringing field are taken into account. Four dimensionless numbers are derived from the governing equation of the developed model. A semi-analytical method is developed to calculate the behavior of the RF MEMS switches. Subsequently the influence of the material and geometry parameters on the behavior of the structure is analyzed and compared, and the corresponding analysis with the dimensionless numbers is conducted too. The quantitative relationship between the presented parameters and the critical pull-in voltage is obtained, and the relative importance of those parameters is given.
Resumo:
According to the experimental results, there exist large-scale coherent structures in the outer region of a turbulent boundary layer, which have been studied by many authors.As experimental results, Antonia (1990) showed the phase- aver aged streamlines and isovorticity lines of the large-scale coherent structures in a turbulent boundary layer for different Reynolds numbers. Based on the hydrodynamic stability theory, the 2-D theoretical model for the large-scale structures was proposed by Luo and Zhou, in which the eddy viscosity was defined as a complex function of the position in the normal direction. The theoretical results showed in ref. were in agreement with those in ref. However, there were two problems in the results. One is that in the experimental results, there were divergent focuses between two saddle points in the streamlines, but in the theoretical results, there were centers. The other is that the stretched parts of the isovorticity lines appear at the location of centers in the theoretical results, while in the experimental results they located somewhere between the focuses and saddle points. The reason is that the computations were based on a 2-D model.
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
We propose a theoretical model for analyzing the dynamics of a periodically driven semiconductor laser subject to optical feedback from a microcantilever. We numerically investigate the temporal evolution of the light intensity of the semiconductor laser, and we show the interspikes of the light intensity. These interspikes of light intensity are also demonstrated in our experiment. The validity of the theoretical model is verified. The observed phenomenon has a potential application for resonant sensing. (C) 2008 Optical Society of America.
Resumo:
The crystallographic tilt of the epilayers with respect to their substrates has been observed in many heteroepitaxial systems. Many models have been proposed to explain this phenomenon, but none of them is suitable for the large mismatched system, such as GaAs/Si. Here a new model is proposed for GaAs/Si epilayers, which can also be used in other large mismatched systems. The magnitude of the tilt calculated from this model coincide well with the experimental results. Especially, this model can correctly predict the tilt direction of the GaAs/Si epilayers.
A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL)
Resumo:
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.
Resumo:
Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.
Resumo:
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.
Resumo:
The JTZ model [C. Jung, T. T¶el and E. Ziemniak, Chaos 3, (1993) 555], as a theoretical model of a plane wake behind a circular cylinder in a narrow channel at a moderate Reynolds number, has previously been employed to analyze phenomena of chaotic scattering. It is ex- tended here to describe an open plane wake without the con¯ned nar- row channel by incorporating a double row of shedding vortices into the intermediate and far wake. The extended JTZ model is found in qualitative agreement with both direct numerical simulations and ex- perimental results in describing streamlines and vorticity contours. To further validate its applications to particle transport processes, the in- teraction between small spherical particles and vortices in an extended JTZ model °ow is studied. It is shown that the particle size has signif- icant in°uences on the features of particle trajectories, which have two characteristic patterns: one is rotating around the vortex centers and the other accumulating in the exterior of vortices. Numerical results based on the extended JTZ model are found in qualitative agreement with experimental ones in the normal range of particle sizes.