170 resultados para Functional
Resumo:
Dimensional and finite element analyses were used to analyze the relationship between the mechanical properties and instrumented indentation response of materials. Results revealed the existence of a functional dependence of (engineering yield strength sigma(E,y) + engineering tensile strength sigma(E,b))/Oliver & Pharr hardness on the ratio of reversible elastic work to total work obtained from an indentation test. The relationship links up the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr hardness may deviate from the true hardness when sinking in or piling up occurs. The functional relationship can further be used to estimate the SUM sigma(E,y) + sigma(E,b) according to the data of an instrumented indentation test. The sigma(E,y) + sigma(E,b) value better reflects the strength of a material compared to the hardness value alone. The method was shown to be effective when applied to aluminum alloys. The relationship can further be used to estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests in different modes.
Resumo:
We report a previously unknown body-centered-tetragonal structure for ZnO. This structure results from a phase transformation from wurtzite in [0001]-oriented nanorods during uniaxial tensile loading and is the most stable phase for ZnO when stress is above 7 GPa. The stress-induced phase transformation has important implications for the electronic, piezoelectric, mechanical, and thermal responses of ZnO. The discovery of this polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A crystalline structure-load triaxiality map is developed to summarize the relationship between structure and loading.
Resumo:
Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.
Resumo:
We compare the effectiveness of six exchange/correlation functional combinations (Becke/Lee, Yang and Parr; Becke-3/Lee, Yang and Parr; Becke/Perdew-Wang 91; Becke-3/Perdew-Wang 91; Becke/Perdew 86; Becke-3/Perdew 86) for computing C-N, O-O and N-NO2 dissociation energies and dipole moments of five compounds. The studied compounds are hexabydro-1,3,5-trinitro-1,3,5-triazine (RDX), dimethylnitramine, cyanogen, nitromethane and ozone. The Becke-3/Perdew 86 in conjunction with 6-31G