32 resultados para FUNCTIONAL-DIFFERENTIAL EQUATIONS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From the partial differential equations of hydrodynamics governing the movements in the Earth's mantle of a Newtonian fluid with a pressure- and temperature-dependent viscosity, considering the bilateral symmetry of velocity and temperature distributions at the mid-plane of the plume, an analytical solution of the governing equations near the mid-plane of the plume was found by the method of asymptotic analysis. The vertical distribution of the upward velocity, viscosity and temperature at the mid-plane, and the temperature excess at the centre of the plume above the ambient mantle temperature were then calculated for two sets of Newtonian rheological parameters. The results obtained show that the temperature at the mid-plane and the temperature excess are nearly independent of the rheological parameters. The upward velocity at the mid-plane, however, is strongly dependent on the rheological parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet boundary conditions. This problem is considered in little Holder spaces. The optimal regularity of the solution v is obtained and is specified in terms of those of the second member when some conditions upon the Holder exponent with respect to the degeneracy are satisfied. The proofs mainly use the sum theory of linear operators with or without density of domains and the results of smoothness obtained in the study of some abstract linear differential equations of elliptic type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A previously published refined shear deformation theory is used to analyse free vibration of laminated shells. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first-order shear deformation theory, hut the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of symmetric cross-ply laminated cylindrical shells, symmetric and antisymmetric cross-ply cylindrical panels is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we study the issues of modeling, numerical methods, and simulation with comparison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The mathematical model is based on the assumption of one-dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and the wall friction force on both phases being ignored. The model consists of a set of coupled differential equations describing the conservation of mass and momentum in both phases with coupling and interaction between the two phases. We demonstrate conditions under which the system is either mathematically well posed or ill posed. We consider the general model with additional physical viscosities and/or additional virtual mass forces, both of which stabilize the system. Two numerical methods, one of them is first-order accurate and the other fifth-order accurate, are used to solve the models. A change of variable technique effectively handles the changing domain and boundary conditions. The numerical methods are demonstrated to be stable and convergent through careful numerical experiments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared with experimental data. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A previously published discrete-layer shear deformation theory is used to analyze free vibration of laminated plates. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first order shear deformation theory, but the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of simply supported symmetric and antisymmetric cross-ply plates is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper, an isolated axisymmetric flux tube is discussed for slender magnetic configuration. The magnetostatic model and the stratified atmospheric model are applied, respectively, to the regions inside and outside the flux tube. The problem is described mathematically by the nonlinear partial differential equations under the nonlinear boundary condition at the free boundary of flux tube. According to the approximation of a small expansive angle, the solutions of series expressions are obtained formally. The model of polytropic plasma is discussed in detail especially. The results show the distributions of thermodynamic quantities and magnetic field extending from the high β region to the low β region, and the flux tube may be either divergent or convergent according to the pressure difference outside and inside the flux tube.