145 resultados para Exact Solutions
Resumo:
By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.
Resumo:
This paper presents exact density, velocity and temperature solutions for two problems of collisionless gas flows around a flat plate or a spherical object. At any point off the object, the local velocity distribution function consists of two pieces of Maxwellian distributions: one for the free stream which is characterized by free stream density, temperature and average velocity, n0, T0, U0; and the other is for the wall and it is characterized by density at wall and wall temperature, nw,Tw. Directly integrating the distribution functions leads to complex but exact flowfield solutions. To validate these solutions, we perform numerical simulations with the direct simulation Monte Carlo (DSMC) method. In general, the analytical and numerical results are virtually identical. The evaluation of these analytical solutions only requires less than one minute while the DSMC simulations require several days.
Resumo:
A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.
Resumo:
A new high-order refined shear deformation theory based on Reissner's mixed variational principle in conjunction with the state- space concept is used to determine the deflections and stresses for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials are introduced to approximate the in-plane displacement distributions across the plate thickness. Numerical results are presented with different edge conditions, aspect ratios, lamination schemes and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir indicates that the present theory accurately estimates the in-plane responses.
Resumo:
Ten kinds of the simplified Navier-Stokes equations (SNSE) are reviewed and also used to calculate the Jeffery-Hamel flow as well as to analyze briefly the seven kinds of flows to which the exact solutions of the complete Navier-Stokes equations (CNSE) have been found. Analysis shows that the actual differences among the solutions of the different SNSE can go beyond the range of the order of magnitude of Re-1/2 and result even in different flow patterns, therefore, how to choose the viscous terms included in the SNSE is worthy of notice where Re=S∞u∞ L/μ∞ is the Reynolds numbers. For the aforesaid eight kinds of flows, the solutions to the inner-outer-layer-matched SNSE and to the thin-layer-2-order SNSE agree completely with the exact solutions to CNSE. But the solutions to all the other SNSE are not completely consistent with the exact solutions to CNSE and not a few of them are actually the solutions of the classical boundary layer theory. The innerouter-layer-matched SNSE contains the shear stress causing angular displacement of the inormal axis with respect to the streamwise axis and the normal stress causing expansion-contraction in the direction of the normal axis and the viscous terms being of the order of magnitude of the normal stress; and it can also reasonably treat the inertial terms as well as the relation between the viscous and inertial terms. Therefore, it seems promising in respects of both mechanics and mathematics.
Resumo:
An approximate analytical description for fundamental-mode fields of graded-index fibers is explicitly presented by use of the power-series expansion method, the maximum-value condition at the fiber axis, the decay properties of fundamental-mode fields at large distance from the fiber axis, and the approximate modal parameters U obtained from the Gaussian approximation. This analytical description is much more accurate than the Gaussian approximation and at the same time keep the simplicity of the latter. As two special examples, we present the approximate analytical formulas for the fundamental-mode fields of a step profile fiber and a Gaussian profile fiber, and we find that they are both highly accurate in the single-mode range by comparing them with the corresponding exact solutions.
Resumo:
New exact solutions of the (2 + 1)-dimensional double sine-Gordon equation are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon system and double sine-Gordon equation. Two arbitrary functions are included into the Jacobi elliptic function solutions. New doubly periodic wave solutions are obtained and displayed graphically by proper selections of the arbitrary functions.
Resumo:
We have investigated the basic properties of subwavelength-diameter hollow optical fiber with exact solutions of Maxwell's equations. The characteristics of modal field and waveguide dispersion have been studied. It shows that the subwavelength-diameter hollow optical fibers have interesting properties, such as enhanced evanescent field, local enhanced intensity in the hollow core and large waveguide dispersion that are very promising for many miniaturized high performance and novel photonic devices. (C) 2007 Optical Society of America.
Resumo:
We examine in terms of exact solutions of the time-dependent Schrodinger equation, the quantum tunnelling process in Bose-Einstein condensates of two interacting species trapped in a double well configuration. Based on the two series of time-dependent SU(2) gauge transformations, we diagonalize the Hamilton operator and obtain analytic time-evolution formulas of the population imbalance and the berry phase. the particle population imbalance (a(L)(+)aL - a(R)(+)a(R)) of species A between the two wells is studied analytically.
Resumo:
Exact solutions of Maxwell's equations describing the lightwave through 3-layer-structured cylindrical waveguide are obtained and the mode field diameter and nonlinear coefficient of air-core nanowires (ACNWs) are numerically calculated. The simulation results show that ACNWs offer some unique optical properties, such as tight field confining ability and extremely high nonlinearity. At a certain wavelength and air core radius, we optimize the waveguide design to maximize the nonlinear coefficient and minimize the mode field diameter. Our results show that the ACNWs may be powerful potential tools for novel micro-photonic devices in the near future.
Resumo:
Effective dielectric responses of graded cylindrical composites are investigated when an external uniform field is applied to the composites. Considering linear random composites of cylindrical particles with a specific dielectric function, which varies along the radial direction of the particles, we have studied three cases of dielectric profiles: exponential function, linear and power-law profiles. For each case, the effective dielectric response of graded composites is given on the basis of exact solutions of the local potentials of composites in the dilute limit. For a larger volume fraction, we have proposed an effective medium approximation to estimate the effective dielectric response.
Resumo:
A method of transformation field is developed to estimate the effective properties of graded composites whose inclusions have arbitrary shapes and gradient profiles by means of a periodic cell model. The boundary-value problem of graded composites having arbitrary inclusion shapes is solved by introducing the transformation field into the inclusion region. As an example, the effective dielectric response of isotropic graded composites having arbitrary shapes and gradient profiles is handled by the transformation field method (TFM). Moreover, TFM results are validated by the exact solutions of isotropic graded spherical inclusions having a power-law profile and good agreement is obtained in the dilute limit. Furthermore, it is found that the inclusion shapes and the parameters of the gradient profiles can have profound effect on the effective properties of composite systems at high concentration of inclusions.
Resumo:
A three-phase piezoelectric cylinder model is proposed and an exact solution is obtained for the model under a farfield antiplane mechanical load and a far-field inplane electrical load. The three-phase model can serve as a fiber/interphase layer/matrix model, in terms of which a lot of interesting mechanical and electrical coupling phenomena induced by the interphase layer are revealed. It is found that much more serious stress and electrical field concentrations occur in the model with the interphase layer than those without any interphase layer. The three-phase model can also serve as a fiber/matrix/composite model, in terms of which a generalized self-consistent approach is developed for predicting the effective electroelastic moduli of piezoelectric composites. Numerical examples are given and discussed in detail.
Resumo:
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.
Resumo:
There are many fault block fields in China. A fault block field consists of fault pools. The small fault pools can be viewed as the closed circle reservoirs in some case. In order to know the pressure change of the developed formation and provide the formation data for developing the fault block fields reasonably, the transient flow should be researched. In this paper, we use the automatic mesh generation technology and the finite element method to solve the transient flow problem for the well located in the closed circle reservoir, especially for the well located in an arbitrary position in the closed circle reservoir. The pressure diffusion process is visualized and the well-location factor concept is first proposed in this paper. The typical curves of pressure vs time for the well with different well-location factors are presented. By comparing numerical results with the analytical solutions of the well located in the center of the closed circle reservoir, the numerical method is verified.