228 resultados para Evolutionary Relationships
Resumo:
The evolutionary relationships of species of Danio and the monophyly and phylogenetic placement of the genus within the family Cyprinidae and subfamily Rasborinae provide fundamentally important phyloinformatics necessary for direct evaluations of an array of pertinent questions in modern comparative biology. Although the genus Danio is not one of the most diverse within the family, Danio rerio is one of the most important model species in biology. Many investigations have used this species or presumed close relatives to address specific questions that have lasting impact on the hypothesis and theory of development in vertebrates. Largely lacking from this approach has been a holistic picture of the exact phylogenetic or evolutionary relationships of this species and its close relatives. One thing that has been learned over the previous century is that many organismal attributes (e.g., developmental pathways, ecologies, behaviors, speciation) are historically constrained and their origins and functions are best explained via a phylogenetic approach. Herein, we provide a molecular evaluation of the phylogenetic placement of the model species Danio rerio within the genus Danio and among hypothesized closely related species and genera. Our analysis is derived from data using two nuclear genes (RAG1, rhodopsin) and five mitochondrial genes (ND4, ND4L, ND5, COI, cyt b) evaluated using parsimony, maximum likelihood, and Bayesian analyses. The family Cyprinidae is resolved as monophyletic but the subfamily Rasborinae (priority over Danioinae) is an unnatural assemblage. Danio is identified as a monophyletic group sister to a clade inclusive of the genera Chela, Microrasbora, Devario, and Inlecypris, not Devario nor Esomus as hypothesized in previous studies. Danio rerio is sister to D. kyathit among the species of Danio evaluated in this analysis. Microrasbora and Rasbora are non-monophyletic assemblages; however, Boraras is monophyletic.
Resumo:
Ranid frogs of the genus Amolops occur in Southeast Asia and are typically found near waterfalls. Their phylogenetic relationships have not been resolved. We include 2,213 aligned nucleotide sites of the 12S, 16S and tRNA(val) gene regions of the mitochondrial DNA genome from 43 individuals of Chinese and Vietnamese Amotops, Huia, Hylarana, Meristogenys, Odorrana and Rana. The outgroup species were from the genera Chaparana, Limnonectes, Nanorana, and Paa. The data were analyzed within the framework of a refutationist philosophy using maximum parsimony. Four clades of waterfall frogs were resolved. Meristogenys was not resolved as the sister group to either Huia nor Amolops. The hypothesis Of evolutionary relationships placed Amolops chapaensis and Huia nasica in the genus Odorrana.
Resumo:
Mitochondrial DNA polymorphisms in 15 specimens of three species of slow lorises-Nycticebus coucang, N. intermedius, and N. pygmaeus-were analyzed in order to study the evolutionary relationships among the species. Eight restriction types were observed in the samples. Phylogenetic trees constructed on the basis of genetic distances showed that the slow lorises sort into two clusters: four types of N. coucang and three types of N. intermedius plus one type of N. pygmaeus. Our results suggest that there are two valid species in the genus Nycticebus-N. coucang and N. pygmaeus-and that N. intermedius should be included within N. pygmaeus. Divergence between the two species may have begun 2.7 Ma (million years ago). Evolution of gross morphology, chromosomes, and mitochondrial DNA in the slow lorises appears to be concordant.
Resumo:
Random amplified polymorphic DNA (RAPD) markers are used to investigate genetic variation and evolutionary relationships of 29 samples of Cordyceps sinensis from different geographical populations on the Qinghai-Tibet plateau. Out of 137 RAPD bands scored, 100 are polymorphic. A correlation is revealed between geographical distance and genetic distance. The molecular phylogenetic tree suggests that the 29 samples are divided into three notable clusters, corresponding to the geographical populations, i.e., the north population (NP), middle population (MP), and south population (SP). The NP consists of 7 northern samples from Menyuan, Maqu, and Luqu, the MP consists of 8 samples from Yushu and Chengduo, and the SP consists of 14 samples from Byma Snow Mountain, Renzhi Snow Moutain, Chongcaoxiwa, and Dacaodi. It is demonstrated that extensive genetic diversity is found among different geographical populations of C. sinensis. The genetic diversity pattern of C. sinensis may be caused by the founder effects. The taxonomic status of NP, MP, and SP populations should be that they are different subspecies rather than different species.
Resumo:
There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kutzing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased with development when hormogonia were used as the starting point. Acidic polysaccharides (AP) were most abundant at the aseriate stage and then decreased, while the sulfated polysaccharides (SP) were highest at the colony stage. Quantitatively, along the developmental process from hormogonia to colony, total carbohydrates first increased, then became stable, and then reached their highest level at the colony stage, while reducing sugars were highest at the hormogonia stage and then decreased sharply once development began. SP were not detectable in the hot water soluble polysaccharides (HWSP), and hormogonia had the lowest content of AP, while old colonies had the highest. The AP content of the aseriate stage, filamentous stage and young colony stage were very similar. The evolutionary relationships reflected in the developmental stages of N. sphaeroides are discussed.
Resumo:
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.
Resumo:
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5-10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.
Resumo:
We consider numerical characterization of DNA primary sequence based on the positions of bases (a, t, c, g) and the pairs of bases X, Y in DNA (X, Y=a, t, c, g). This leads to a representation of DNA by a numerical sequence. Then, we extract a novel invariant (molecular connectivity index) from the derived numerical sequences. The suitable invariant can offer a characterization of DNA primary sequence. Finally, we provide an illustration of its utility by making a comparison between ten DNA sequences belonging to beta-globin gene in different species. The evolutionary relationships of ten species we have revealed in this contribution accord with phylogenetic tree properly.
Resumo:
PS I, PS II and light-harvesting complexes (LHC) in oxygen evolving photosynthetic organisms were reviewed. These organisms include cyanobacteria, red algae, brown algae, diatoms, chrysophytes, dinophytes, xanthophytes, crypophytes, green algae and green plants. The diversity of pigment-protein complexes that fuel the conversion of radiant energy to chemical bond energy was highlighted, and the evolutionary relationships among the LHC structural polypeptides and the characteristics of the fluorescence emission of PS I at 77 K was discussed.
Resumo:
Complete mitochondrial genomes have proven extremely valuable in helping to understand the evolutionary relationships among metazoans. However, uneven taxon sampling may lead to unclear or even erroneous phylogenetic topologies. The decapod crustaceans are relatively well-sampled, but sampling is still uneven within this group. We have sequenced the mitochondrial genomes of two shrimps Litopenaeus vannamei and Fenneropenaeus chinensis. As seen in other metazoans, the genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and an AT-rich non-coding region. The gene arrangements are consistent with the pancrustacean ground pattern. Both the pattern of gene rearrangements and phylogenomic analyses using concatenated nucleic acid and amino acid sequences of the 13 mitochondrial protein-coding genes strengthened the support that Caridea and Palinura are primitive members of Pleocyemata. These sequences, in combination with two previously published penaeid mitochondrial genomes, suggest that genera within the family Penaeidae have the following relationship: (((Penaeits + Fenneropenaett.) + Litopeiiaelts) + Marsupenaeus). The analyses of nucleic acid and amino acid sequences of the mitochondrial genomes also strongly support the monophyly of Penaeidae, Brachyura and Pleocyemata. In addition, the analyses of the average Ka/Ks in the 13 mitochondrial protein-coding genes of penaeid shrimps indicated a strong purifying selection within this group.
Resumo:
Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d(N)/d(S) ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores.
Resumo:
Phylogenetic relationships among 37 living species of order Carnivora spanning a relatively broad range of divergence times and taxonomic levels were examined using nuclear sequence data from exon1 of the IRBP gene (approximate to1.3 kb) and first intron