183 resultados para Equilibrium Poly(hema-co-thfma) Hydrogels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)(HEMA-co-EDMA) spheres were prepared by emulsifier-free emulsion polymerization, swelling, seed emulsion polymerization and extraction. Then the spheres activated with 2,4,6-trichloro-1,3,5-triazine were functioned with adipohydrazide (AH). After periodate oxidation of its carbohydrate moieties, horseradish peroxidase was immobilized on the hydrazide-functionalized hollow porous poly(HEMA-co-EDMA) spheres. The amount of immobilized enzyme was up to 43.4 mu g of enzyme/g of support. Moreover, the immobilized horseradish peroxidase exhibited high activity and good stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel sulfonated poly(arylene-co-binaphthalimide)s (SPPIs) were successfully synthesized via Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and bis(chloronaphthalimide)s. Bis(chloronaphthalimide)s were conveniently prepared from 5-chloro-1,8-naphthalic anhydride and various diamines. Tough and transparent SPPI membranes were prepared and the electrolyte properties of the copolymers were intensively investigated as were the effects of different diamine structures on the copolymer characterisitics. The copolymer membrane Ia-80, with an ion exchange capacity (IEC) of 2.50 meq g(-1), displayed a higher proton conductivity, i.e. 0.135 S cm(-1) at 20 degrees C, as compared to Nafion 117 (0.09 S cm(-1), 20 degrees C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three Polypropylene/Poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys produced by a two-stage slurry/gas polymerization had different ethylene contents and mechanical properties, which were achieved by controlling the copolymerization time. The three alloys were fractionated into five fractions via temperature rising dissolution fractionation (TRDF), respectively. The chain structures of the whole samples and their fractions were analyzed using high-temperature gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), C-13 nuclear magnetic resonance (C-13 NMR), and differential scanning calorimetry (DSC) techniques. These three in-reactor alloys mainly contained four portions: ethylenepropylene random copolymer (EPR), ethylene-propylene (EP) segmented and block copolymers, and propylene homopolymer. The increased copolymerization time caused the increased ethylene content of the sample. The weight percent of EPR, EP segmented and block copolymer also became higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin has been encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres by solid-in-oil-in-oil (S/O/O) emulsion technique using DMF/corn oil as new solvent pairs. To get better encapsulation efficiency, insulin nanoparticles were prepared by the modified isoelectric point precipitation method so that it had good dispersion in the inner oil phase. The resulting microspheres had drug loading of 10% (w/w), while the encapsulation efficiency could be up to 90-100%. And the insulin release from the microspheres could last for 60 days. Microspheres encapsulated original insulin with the same method had lower encapsulation efficiency, and shorter release period. Laser scanning confocal microscopy indicated the insulin nanoparticle and original insulin had different distribution in microspheres. The results suggested that using insulin nanoparticle was better than original insulin for microsphere preparation by S/O/O method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Stimuli-sensitive or intelligent hydrogels have been investigated for many biomedical and pharmaceutical applications. Those hydrogels with dual sensitivity will have more extensive potential applications. The aim of the work presented was to prepare a series of thermo- and pH-sensitive hydrogels based on poly(vinylmethyl ether) (PVME) and carboxymethylchitosan (CMCS). The hydrogels were crosslinked using electron beam irradiation (EB) or using glutaraldehyde (GA) as a crosslinker at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite of hydroxyapatite (HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) shows a wide application for bone fixation materials due to its improved interface compatibility, mechanical property and biocompatibility in our previous study. In this paper, a 3-D porous scaffold of g-HAP/poly (lactide-co-glycolide) (PLGA) was fabricated using the solvent casting/particulate leaching method to investigate its applications in bone replacement and tissue engineering. The composite of un-grafted HAP/PLGA and neat PLGA were used as controls. Their in vivo mineralization and osteogenesis were investigated by intramuscular implantation and replacement for repairing radius defects of rabbits. After surface modification, more uniform distribution of g-HAP particles but a lower calcium exposure on the surface of g-HAP/PLGA was observed. Intramuscular implantation study showed that the scaffold of g-HAP/PLGA was more stable than that of PLGA, and exhibited similar mineralization and biodegradability to HAP/PLGA at the 12-20 weeks post-surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.