19 resultados para Environmental Parameters
Resumo:
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July-September in 2003-2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river-connected lakes (SL) was nearly 33 times that in permanently river-connected lakes (RL), and more than six times that in city lakes (NC) and non-urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 mu g L-1) was detected in Dianshan Lake. 3. MC-RR and MC-LR were the primary toxin variants in our data. MC-RR, MC-YR and MC-LR were significantly correlated with Ch1 a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus UP) and NH4+ with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO3- + NO2- were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochernical factors.
Resumo:
A comprehensive strength monitoring system used on a fixed jacket platform is presented in this paper. The long-term monitoring of W-11-4A platform achieved. Structural responses (strain and acceleration) at selected locations, as well as associated environmental parameters, have been obtained. The emphasis of the paper is placed on the system design, and the instrumentation and operation methodology employed in the monitoring of the structural responses. The performance of the system and the characteristic results obtained during its 13-month operation are also summarized.
Resumo:
Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from -0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal.
Resumo:
混农季节性放牧(agropastoral transhumance)通过作物种植和畜牧生产相结合的方式对不同海拔高度带上的资源进行相互补充利用,在亚洲兴都库什地区、青藏高原、横断山、东部及南部非洲、南美安第斯地区等具有悠久的历史。这种传统的生计系统几千年以来一直是居住在该地区的人类社会和自然生态系统相互作用的主要形式之一。这种传统的资源利用方式与山地自然植被以及特殊的山地人类文化和社会特征具有密切的协同演变关系。认识和理解这一关系,是山地生态学和人类学的核心科学问题之一。近年来,山地生态系统的多重功能性及动态演变对山区社会经济可持续发展的重要意义受到人们的不断关注。本文通过对云南省德钦县的12个自然村的混农季节性放牧以及对云南德钦、四川壤塘等山地植被格局特别是高海拔地带植被格局的的详细调查,探讨青藏高原东缘地区混农季节性放牧的主要特征、系统构成及相互关系,及其在全球变化、经济全球化和市场化及现代化过程中的变化趋势,分析混农季节性放牧与高山林线格局及生态系统的互动关系,旨在探讨山地地区人类活动与自然生态系统之间的互动关系,从而为山区社会经济可持续发展、环境建设和生物多样性保护等国家战略提供理论依据。 调查结果表明,混农季节性放牧是一种适应青藏高原东部高山峡谷地区环境因子及自然资源呈明显的垂直分布、资源数量稀少而时空分布异质性极高的生存环境的一种传统经济形式。这种传统的畜牧业的主要生产目的仍然是提供当地基本生存所需的产品,饲养牲口的种类和数量取决于农户的当地需求并且受资源的限制,因而维持在比较低的水平的。分布在不同海拔高度的放牧资源在一年中被牲口利用的时间也不同,互为补充,共同构成混农季节性放牧的资源基础。根据各社区永久居住点的位置和该村的土地资源特别是牧草地资源的分布范围,牲口迁移的距离和格局有较大的差异。。天然牧场仍然是最主要的畜牧业生产资源。混农季节性放牧中的农业系统和牧业系统互为补充,共同构成调查地区完整的的生计系统,农耕活动为放牧活动提供精饲料如粮食等和冬季饲料如秸秆, 其数量往往成为家庭畜牧业生产规模的主要决定因子之一。 通过对牲口数量和结构、牲口的时空迁移格局、牧业活动在整个经济活动中的相对重要性以及牧业活动和作物种植的关系方面的研究分析,混农季节性放牧在近几十年发生了深刻的变化。主要表现在牲口数量总体下降,牲口组成发生变化,牲口移动性降低、牧业活动的经济重要性下降以及牧业活动和种植活动之间的相互依存度降低等。上述变化的根本驱动力是发生在当地、地区及全球尺度上的环境、政治、社会经济、技术和文化等的变化,从而造成当地群众畜牧生产目标、土地利用和劳动力的分布等发生了变化。当地生计系统发生的改变可能会带来对方面而深刻的政治、社会经济、文化和生态影响。 混农季节性放牧这种古老的传统生计策略面临着许多挑战,如冬季饲料短缺、草场退化、缺乏市场竞争力、经济重要性降低、对年轻人缺乏吸引力、国家缺乏专门的政策指导等。与此同时,经济全球化、市场经济、新技术的应用、替代生计机会的增加、国家对于山地生态系统的作用的重新定位等也为传统生计系统转型、实现社会与生态共赢创造了机遇。 混农季节性放牧活动对亚高山及树线交错带生态系统系统的互动方式主要体现在以下几个方面:(1)牲口啃食、践踏等影响森林群落更新,改变森林群落的组成和结构,从而影响森林群落的演替进程和植被格局。林线边缘是搭建夏棚的首选地点,因此林线及树线交错地带就成了牲口活动的主要场所之一;(2)利用火烧开辟、维持和改良高山牧场; 3)在亚高山火灾迹地的放牧活动能够阻止火烧迹地的顺向演替; 4)牧民在林线附近获取建材和薪材等活动影响高山林线附近森林的结构和功能。 在调查区域,梅里雪山、白马雪山、甲午雪山的林线海拔高度在4200-4300m之间; 四川雅江、理塘一线,林线位置多在4300-4400m;四川壤塘二林场一带的林线主体在4100-4200m,在个别地区达到4300m; 在贡嘎山的南坡和东坡一带,林线位置在3600-3700m;而在四川松潘一带,林线位置主体在3700-3800米左右。树线高度的分布趋势和林线一致。混农季节性放牧及其有关人类利用活动使研究地区很多地方高山林线降低、树线交错带宽变窄或消失。在研究地区,总体情况是,阳坡和半阳坡(南坡、西南坡等)的林线和树线比阴坡和半阴坡(北坡、东北坡等)低,变化幅度达20-200m。这种差异主要是为了开辟牧场而人为清除了南向坡自然林线及其以上的植被从而使林线位置下降所致。在南坡自然林线保留得比较好的地方,林线和树线依然可以达到甚至超过北坡林线和树线的高度。放牧活动抑制了高山林线带火烧迹地的天然更新,从而使林线位置保持在目前的位置。 放牧活动对高山林线带森林群落更新的影响是显著的。自然林线内的乔木个体密度特别是新生苗和幼苗的密度大大高于非自然林线。没有放牧的自然林线及树线交错带内的I级个体(新生苗)密度达到725-2917株/公顷,而与之相对的处理样地内I级个体的密度只有0-228株/公顷;II级个体(高度10-50cm)也表现出类似的趋势,在没有放牧的自然林线及树线交错带样方内,其密度达到550-5208株/,而在放牧处理样方内只有14-321株/公顷。在非自然林线带样地内,在有正常放牧的样地内,完全缺乏I级个体。 从相对比例来看,没有放牧的样方内的I、II级个体在全部个体中所占的比例显著高于有放牧活动的样方。放牧使林线交错带的乔木幼苗数量显著减少,从而影响林线及树线交错带森林群落的天然更新过程。林线和树线交错带的灌木对乔木幼苗具有重要的保护作用,能够为树线树种如冷杉等幼苗的定居体提供有利的微气候环境,同时保护苗免受牲口的啃食和践踏。火烧以后接着进行放牧能够100%地抑制高山林线带的幼苗更新。 高山牧场放牧强度降低、使用时间缩短而低海拔地带放牧强度增加是研究地区混农季节性放牧系统的一个显著变化。这种变化也必然会引起各海拔带上的生态系统的变化。放牧强度的降低、生产性用火的停止将导致原来通过人工火烧而降低并通过进一步的火烧和放牧活动来维持的林线及其以上地带的灌木盖度和高度的增加,从而为林线森林群落的扩张创造条件。 青藏高原东部高山峡谷地区是我国重要的山地生态系统,在我国的生物多样性保护、生态环境建设、社会经济可持续发展战略中具有举足轻重的作用。正确认识人类特别是当地传统的生计系统与生态环境系统的互动关系是实现上述战略目标的前提。决策者必须以综合、系统的的视角协调促进社会经济可持续发展、保护生物及文化多样性和维持人、牲口和生态系统之间的平衡的多重目标。 Agropastoral transhumance, which makes a complementary exploitation of the natural resources at different altitudinal belts through a combination of migratory animal husbandry and crop cultivation, has a long history in Hindu-Kush Himalaya, Tibet Plateau, Hengduan Ranges, eastern and southern Africa and the Andes region of south America.For millennia, this traditional livelihood strategy has been one of the main forms of interaction between human societies inhabiting in these regions and their natural ecocystems. A close co-evolutionary relationship has been developed between this indigenous resources management systems and the mountain vegetation systems on the one hand and a unique set of cultural values and social features on the other. Understanding this relationship has been one of the core scientific issues in mountain ecology and anthropology. In recent years, the importance of the multiple functions of the mountain ecosystems and their dynamic changes in the sustainable socio-economic development of the mountain regions has gained increasing attention. This paper, which is based on a detailed study on the agropastoral practices of the 12 natural villages in Deqin County of Yunnan, and the mountainnn vegetation patterns in Deqin of Yunnan and Rangtang County of Sichuan, intends to reveal the major characteristics, system composition and the inter-relations of the subsystems of the agropastoral transhumance in Eastern Tibetan Plateau as well as the trends of changes of the system within the context of global changes, economic globalization and modernity process of China and analyze the relations between agropastoral transhumance and alpine ecosystem, ao as to understand the interactions between human activities and natural ecosystems of the mountains and provide theoretical basis for the national strategies in eocioeconomic development, environmental reconstruction and biodiversity conservation in the mountain regions. Results of the survey indicate that agropastoral transhumance in the investigated area is a traditional economic form that is highly adapted to the eastern Tibet Plateau where the topography features high peaks and deep gorges and where the highly variable environmental parameters and scanty natural resources exhibit a distinct vertical spectrum of distribution and great temporal and spatial heterogeneity. The main objective of pastoral management is still aimed at the production of basic goods and services of local people and thus the type and size of animals raised for each household mainly depend on local needs and are limited by the availability of natural resources. The scale of production is relatively low. Pastoral resources at different altidudinal belts are complementarily used at different seasons of a year and thus form the resources basis for agropastoral production of the study area. Migration distances and patterns vary with the location of the permanent settlements, the elevational distribution range of the resources of the villages concerned. Natural pastures (rangelands) are the main fodder resources and sumplement feedings only account for less than 5% of the total fodder consumption. Crop cultivation and pastoral activities support each other to form a complete livelihood system. The ability of the farmig lands (crop cultivation) to provide the pastoral activities with concentrates and sumplements often becomes a main factor limiting the scale of livestock production at household level. Agropastoral transhumance is experiencing drastic changes in recent decades as is reflected in the size and composition of animals, the seasonal migration pattern, the relative importance of pastoralism in the household economy and the interplays of agricultural and pastoral elements of the system. In general, there is a decline in animal population and mobility, a shift in animal composition to meet new needs arising from changed macro-economic situation, a decrease in the relative importance in the household economy and an increasing decoupling of agro&pastoral relations. The fundamental divers of these changes can be traced to environmental, social, economic, technological and cultural changes from local to global levels and such changes have further caused local changes in livestock management objectives, land use and distribution of labor forces. Changes in local livelihood systems could have profound political, socioeconomic, cultural and ecological conseuquences. Agropastoral transhumance, as an age-old traditional livelihood strategy, is facing multifacet challenges, such as winter fodder shortage, rangeland degradation, lack of market competitiveness, decrease in economic importance, lack of appreciation among the young generation and adequate policies from the government. At the same time, economic globalization, market economy, intrdoctution of new technologies, increase of alternative income generating opportunities and the national re-oreitation of policies on mountain ecosystems have all brought about new opportunities for the transformation of the traditional livelihood system and the synchronized development of local society and the environment. Agropastoral transhumance interacts with the ecosystems at the timberline and treeline ecotone mainly through the following aspects: 1)Animal browsing and stamping affect the regeneration process of the forest communities and alters the composition and structure of the forest which in turn affect the succession process and vegetation pattern of the forest communities. Forest edges are the priority locations for summer houses and therefore the timeline and treeline area becomes the major venues of aninal activities; (2)herders create, maintain and improve pastures through burning that remove the forest communities at the timeline and treeline ecotone; 3)immediate grazing on the fire sites can significantly prevent the fire sites from perogressive succession; and 4)herders harvesting of construction timber and firewoods affects the structure and functions of the forest communities at the timberline and treeline zone. Timberline position in the survey region shows geographical variations. It is around 4200-4300m in Meilixueshan, Baimaxueshan and Jiawuxueshan in Northwest of Yunnan and rises to 4300-4400m in Yajiang County and Litang County of Sichuan. In Rangtang of Sichuan, it is between 4100-4200m, though reaching 4300m in localized sites. In the southern and eastern slopes of Gongga Mountain, the timberline is only between 3600m and 3700m and in Songpan County at the upper reach of the Minjiang River the timberline is around 3700-3800m.Treeline pattern follows similar trend. In many places, agropastoral transhumance and related human activities have lowered the timberline and treeline and narrowed or removed the treeline ecotone. In the area of survey, generally speaking, timberlines and treelines are lower on the southern slopes than on the northern slopes, with a difference between 20 and 200m. This is mainly because that the use of fires to crerate pastures has removed the forest vegetation at the previous timberline and above. In fact, in many places, well-preserved forests on the south slopes have even high timberline position that the corresponding northern slopes. At subalpine zone, grazing activities could have prohibited the natural regeneration of many forest fire sites and maintained the forest position at the present level. Grazing has a significant impact on the regernation process of forest communities at the timberline zone. Natural timberline and treeline ecotone has much higher density of treeline species individuals especially the emergents and seedlings than the timberlines that are maintained by human activities. In natural timberline and treelien ecotone without grazing interference, the density of the I Class seedlings (less than 10cm in height) ranges 725-2917 /hm2; while that in the treatment plots (with grazing disturbance) is only 0-228//hm2;II Class seedlings (10-50cm)exhibit similar density trends, reaching 550-5208//hm2 in natural timberline without grazing but only 14-321//hm2 in the plots with grazing treatment. In the man-created timberlines, there is no I Class seedling at all in plots with normal grazing activities. In relative terms, in plots without grazing activities, the propotion of I Class and II Class seedlings is much higher than that in plots with grazing. Grazing activities have significantly reduced the number of seedlings in the timberline ane treeline ecotone, and thus affect the natural regeneration process of the forests. Shrubs at the timberline and treeline ecotone can effectively protect the seedlings from severe climate and animal tramping, thus increasing the survival rate of the seedlings. Grazing following fires can completely inhibit forest regeneration process at timberline. Changes in agropastoral transhumance will have great impact on the timberline and treeline pattern of the studied area. The decrease in grazing intensity on alpine pastrues and the cessation of the use of fires will result an increase in the cover and height of shrubs above the present human-maintained treeline, which will create further condition for the expansion of timberline forest communities. Eastern Tibet Plateau harbors some most important mountain ecosystems of China that are of vital importance to the country’s strategy in biodiversity conservation, environmental construction and sustainable sociaoeconomic development. A proper knowledge of the interactions between traditional livelihood systems and the ecosystems in the region is a precondition to the realization of the above strategic goals. Therefore, the decision-makers must have a holistic and systemic perspective so as to integrate the multiple objectives of promoting sustainable socioeconomic development, conserving biological and cultural diversity and maintaining the balances among people, animal population and the ecosystems.
Resumo:
The one-dimensional Kraus-Turner mixed layer model improved by Liu is developed to consider the effect of salinity and the equations of temperature and salinity under the mixed layer. On this basis, the processes of growth and death of surface layer temperature inversion is numerically simulated under different environmental parameters. At the same time, the physical mechanism is preliminarily discussed combining the observations at the station of TOGA-COARE 0 degrees N, 156 degrees E. The results indicate that temperature inversion sensitively depends on the mixed layer depth, sea surface wind speed and solar shortwave radiation, etc., and appropriately meteorological and hydrological conditions often lead to the similarly periodical occurrence of this inversion phenomenon.
Resumo:
We examined the growth, survival and immune response of the scallop, Chlamys farreri, during a 1-year period in deep water of Haizhou Bay. Scallops were cultured using two methods: (1) in lantern nets at a 5 m depth and (2) in a bottom culture system (sleeves) on the seabed at about a 25 m depth. Shell heights, meat dry weight and immune activities in the haemolymph (superoxide dismutase and myeloperoxidase) were measured bimonthly or quarterly from July 2007 to June 2008. Survival was measured at the end of the study and environmental parameters in the experimental layers were monitored during the experiment. The growth and immune activities of scallops were lower when the water temperature was high, which was consistent with the main mortality occurring in summer. The growth and immunity of scallops were higher in the suspended culture than in the bottom culture during the experiment, with the exception of shell growth during the last study period. Survival of scallops in the suspended culture (54.6 +/- 12.3%) was significantly lower than that in the bottom culture (86.8 +/- 3.5%) at the end of this study. We conclude from our results that the high mortality of C. farreri can be prevented by culturing them in a bottom culture system before November of the first year, and then transferring them to a suspended culture to improve scallop production.
Resumo:
A model is developed to investigate the trade-offs between benefits and costs involved in zooplanktonic diel vertical migration (DVM) strategies. The 'venturous revenue' (VR) is used as the criterion for optimal trade-offs. It is a function of environmental factors and the age of zooplankter. During vertical migration, animals are assumed to check instantaneously the variations of environmental parameters and thereby select the optimal behavioral strategy to maximize the value of VR, i.e. taking up as much food as possible with a certain risk of mortality. The model is run on a diel time scale (24 h) in four possible scenarios during the animal's life history. The results show that zooplankton can perform normal DVM balancing optimal food intake against predation risk, with the profile of DVM largely modified by the age of zooplankter.
Resumo:
Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.
Resumo:
The alpine meadow ecosystem on the Qinghai-Tibetan Plateau is characterized by low temperatures because of its high elevation. The low-temperature environment may limit both ecosystem photosynthetic CO2 uptake and ecosystem respiration, and thus affect the net ecosystem CO2 exchange (NEE). We clarified the low-temperature constraint on photosynthesis and respiration in an alpine meadow ecosystem on the northern edge of the plateau using flux measurements obtained by the eddy covariance technique in two growing seasons. When we compared NEE during the two periods, during which the leaf area index and other environmental parameters were similar but the mean temperature differed, we found that NEE from 9 August to 10 September 2001, when the average temperature was low, was greater than that during the same period in 2002, when the average temperature was high, but the ecosystem gross primary production was similar during the two periods. Further analysis showed that ecosystem respiration was significantly higher in 2002 than in 2001 during the study period, as estimated from the relationship between temperature and nighttime ecosystem respiration. The results suggest that low temperature controlled the NEE mainly through its influence on ecosystem respiration. The annual NEE, estimated from 15 January 2002 to 14 January 2003, was about 290 g CO2 m(-2) year(-1). The optimum temperature for ecosystem NEE under light-saturated conditions was estimated to be around 15 degrees C.
Resumo:
Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.
Resumo:
Twenty-five samples from six subenvironments in the barrier-lagoon systems in northeastern Shandong province, China, are examined. A statistical method is used to study the roundness variation of grains of different sizes. Roundness of very fine pebble and very coarse sand varies significantly in different subenvironments. It is possible to discriminate among aqueous depositional environments using the roundness of grains of these sizes. Roundness of grains finer than 0.84 φ is not distinguishable in different subenvironments.
Resumo:
The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.
Resumo:
A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.