159 resultados para Enrichment Factor
Resumo:
A geochemical study of Bohai Bay surface sediments was carried out to analyze the potential harmful element (PHE: Ge, Mo, In, Sn, Sb,Te, Tl, Bi and V) concentrations, transportation and deposition, enrichment factors and sources. Germanium, Mo, In, Sn, Sb, Te, Tl, Bi and V concentrations in the surface sediments were: 1.43-1.71, 0.52-1.43, 0.04-0.12, 2.77-4.14, 1.14-2.29, 0.027-0.085, 0.506-0.770, 0.27-0.63 and 70.35-115.90 mu g/g, respectively. The distributions of total PHE concentrations, together with sequential extraction analyses, showed that the PHEs were mainly due to natural inputs from the continental weathering delivered to the bay by rivers and atmospheric transportation and deposition. However, high Mo, Sb, Te, Bi and V occurred in non-residual fractions, suggesting some anthropogenic inputs in addition to the natural inputs. Besides sources, the distributions of PHEs were influenced by the coupling of physical, chemical and biological processes. Enrichment factor (EF) was computed for each site for each element in order to assess the polluting elements and the degree of pollution at each site. Results revealed that the EFs were generally lower than 1.0, particularly for Ge, Mo, In, Sn, Tl and V; however, the EFs were higher (>1.5), particularly for Sb, Te and Bi, revealing moderate contamination. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Metal contents of surface sediments were analyzed temporally and spatially in Lake Chaohu, China. No obvious temporal variations were observed, which probably due to physio- and bio- mixing, e.g. wind and microbes, in this lake. Enrichment factor of some metals were generally greater than 1.0, suggesting significant anthropogenic impact on metal levels. Significantly positive correlations between concentrations of nutrient and metals indicated that the nutrients transported to this lake contributed, to some extent, to the enrichment of metals. The correlation between trace metals concentrations indicated the co-contamination of anthropogenically derived metal enrichment in surface sediment of Lake Chaohu.
Resumo:
Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mm phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mm phosphate - 10 mm borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.
Resumo:
An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land-based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run-off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.
Resumo:
A method has been developed for determining of heavy metal ions by field-amplified sample injection capillary electrophoresis with contactless conductivity detection. The effects of the 2-N-morpholinoethanesulfonic acid/histidine (MES/His) concentration in the sample matrix, the injection time and organic additives on the enrichment factor were studied. The results showed that MES/His with a low concentration in the sample matrix, an increase of the injection time and the addition of acetonitrile improved the enrichment factor. Four heavy metal ions (Zn2+, Co2+, Cu2+ and Ni2+) were dissolved in deionized water, separated in a 10 mM MES/His running buffer at pH 4.9 and detected by contactless conductivity detection. The detection sensitivity was enhanced by about three orders of magnitude with respect to the non-stacking injection mode. The limits of detection were in the range from 5 nM (Zn2+) to 30 nM (Cu2+). The method has been used to determine heavy metal ions in tap water.
Resumo:
In "high nitrate, low chlorophyll" (HNLC) ocean regions, iron has been typically regarded as the limiting factor for phytoplankton production. This "iron hypothesis" needs to be tested in various oceanic environments to understand the role of iron in marine biological and biogeochemical processes. In this paper, three in vitro iron enrichment experiments were performed in Prydz Bay and at the Polar Front north of the Ross Sea, to study the role of iron on phytoplankton production. At the Polar Front of Ross Sea, iron addition significantly (P < 0.05, Student's t-test) stimulated phytoplankton growth. In Prydz Bay, however, both the iron treatments and the controls showed rapid phytoplankton growth, and no significant effect (P > 0.05, Student's t-test) as a consequence of iron addition was observed. These results confirmed the limiting role of iron in the Ross Sea and indicated that iron was not the primary factor limiting phytoplankton growth in Prydz Bay. Because the light environment for phytoplankton was enhanced in experimental bottles, light was assumed to be responsible for the rapid growth of phytoplankton in all treatments and to be the limiting factor controlling field phytoplankton growth in Prydz Bay. During the incubation experiments, nutrient consumption ratios also changed with the physiological status and the growth phases of phytoplankton cells. When phytoplankton growth was stimulated by iron addition, N was the first and Si was the last nutrient which absorption enhanced. The Si/N and Si/P consumption ratios of phytoplankton in the stationary and decay phases were significantly higher than those of rapidly growing phytoplankton. These findings were helpful for studies of the marine ecosystem and biogeochemistry in Prydz Bay, and were also valuable for biogeochemical studies of carbon and nutrients in various marine environments.
Resumo:
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Resumo:
An ionic exclusion-enrichment phenomenon has been found at the ends of a nano-channel when electric-driven fluid passes through a micro-/nano-hybrid channel [1-3]. In our experiments, the hybrid channels are fabricated with two poly-dimethysiloxane (PDMS) monoliths microchannels (100um X20um X 9mm) and a nanoporous polycarbonate nuclear track-etched (PCTE) membrane (with 50nm pores). The flows are driven under different electrical potential and the test liquids with different PH values are used. The ion depletion in the source channel is observed by the MicroPIV system. In addition, the numerical simulations about ionic exclusion-enrichment in the hybrid channel are carried out. Some results are as followed:
Resumo:
Based on the Mach-Zehnder effect between the core mode and the cladding modes, the interference fringes are formed by a pair of cascaded long-period fiber gratings (CLPFGs). Theoretical analyses show that the spectral spacing and the wavelength of these fringes are functions of the waveguide dispersion factor gamma, which is a characterizing parameter to LPFG and with theoretical and applicational significance. By measuring the characteristics of the transmission spectra of CLPFGs, the absolute value of gamma can be obtained. At the same time, the thermo-optic coefficient of effective refractive index difference between core and cladding modes, p, can also be obtained by measured the temperature sensitivity of these fringes. In the experiments, \gamma\ and mu were measured by this method to be 0.874 and 4.08 x 10(-5) degreesC(-1), respectively, for LPFGs with period of 450 mum and with a HE14 resonant peak at 1554 nm. (C) 2004 Elsevier B.V. All rights reserved.