210 resultados para Electrolyte Solution


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Barium tungstate crystallites with different sizes and morphologies were successfully synthesized using a simple electro-chemical technique by varying the components of electrolyte solutions. XRD analysis evidenced that the as-prepared samples were a pure tetragonal-phase of BaWO4 with a scheelite structure. Scanning electron microscopy images and PL spectra of BaWO4 crystallites revealed that the presence of OH- ions and the incorporation of absolute ethanol into the electrolyte solution would have important effects on their particle sizes, morphologies, and optical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG) molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modi. cation process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three causes involved in the instability of the ISFET are proposed in this study. First, it is ascertained that hydroxyl group resident at the surface of the Si3N4 film or in the electrolyte solution is most active and subject to gain or loss of electrons. This is one of the main causes for ISFET structural instability. Secondly, the stability of the pH-sensitive FET varies with deposition conditions in the fabrication process of the ISFET. This proves to be another cause of ISFET instability. Thirdly, the pH of the measured solution varies with the measuring process and time, contributing to the instability, but is not a cause of the instability of the pH-ISFET itself. We utilized the technique of readjusting and controlling the ratio of hydroxyl groups to amine groups to enhance the stability of the ISFET. Our techniques to improve stability characteristics proved to be effective in practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a poly(vinyl chloride) (PVC) membrane electrode is prepared for gemfibrozil, 2, 2-dimethyl-5(2,5-xylyloxy) valeric acid, based on its ion pair complexes with hexadecyltrioctyl ammonium iodide (HTOA). The membrane composition of the electrode was optimized by using the sequential level elimination method for orthogonal experimental design. The electrode has a Nernstian response range from 2.5 X 10(-5) to 0.1 mol/l with an average slope of 55.3 mV/decade. The limit of detection is 7.1 X 10(-6) mol/l. The electrode responses were not affected by pH in the range 10.0-12.3. A Na2B4O7-Na2CO3 buffer of pH = 11.0 was selected as the background electrolyte solution for potentiometric measurements. The electrode was used for determining gemfibrozil in pharmaceutical preparations with satisfactory results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An apparatus including a rotary-type injector was designed for quantitative sample injection in capillary electrophoresis (CE), in which both pressurized flow and electroosmotic flow were used to drive the background electrolyte solution. A relative standard deviation of peak area of lower than 1% was achieved by using this apparatus. The effects of back-pressure regulator, restrictor, and applied voltage on separation efficiency and resolution were investigated. The utility of this apparatus in both micro-HPLC and pressurized capillary electrochromatography (pCEC) was also demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interfacial characteristics of poly-L-lysine (PL) attached on self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) were studied by an electrochemical method. The results indicated that PL\MPA layer inhibited partly the diffusion process of redox species in solution, and the electrode surface behaved like a microelectrode array. Its permeation effect was also strongly affected by Mg2+. The more Mg2+ ions were added into the electrolyte solution, the greater the difficulty with which the electron transfer of potassium ferricyanide took place. The three different conformations of PL on the electrode surface had different influences on the electron transfer processes of ferricyanide. PL in random coil state hindered most strongly the electron transfer behavior of ferricyanide,while the alpha-helical PL had nearly no effect and the effect of the beta-sheet state PL was intermediate of these. (C) 1997 Elsevier Science S.A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two stable redox couples, accompanying clear color switches between yellow green and blue, can be observed when the VHCF-coated film platinum electrodes are cyclic potential scanned in 3.6 M H2SO4 and 0.2 M K2SO4 electrolyte solution. Electrochemical results and in situ Fourier transfer infrared (FT-IR) spectroscopy demonstrate that the redox reaction of the electroactive iron sites is related to the first redox couple (E-1/2 = 0.81 V) while the second redox couple (E-1/2 = 1.01 V) is due to the redox reactions of the electroactive vanadyl ions. Under the proper conditions, such as in high acidic solutions or thin films (deposition time is less than 2 min) and so on, the third redox couple (E-1/2 = 0.89-0.94 V) can be observed on the cyclic voltammograms, which originates from the redox reactions of the interstitial vanadyl ions. This electrochemical reaction mechanism is investigated by in situ probe beam deflection technique, exchange of K+ ions accompanies with redox reaction of the iron sites, but for redox reaction of the vanadyl ions, both H+ ions, K+ ions and water molecules are involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polypyrrole (PPy) film was synthesized by anodic polymerization of pyrrole onto the surface of platinum electrode in the solution of sodium p-toluene sulfonate (NaTsO). When this film was oxidized anodically in an aqueous solution of adenosine triphosphatle (ATP), the ATP anions were incorporated into the film. Release of ATP From the film could be accomplished by reduction of the film in aqueous electrolyte solution. The total amount of ATP released from the film was determined by UV spectroscopic method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.