48 resultados para Early Warning and Nowcasting Approaches for Water Quality in Riverine and Coastal Systems
Resumo:
Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S-eq, G and T-90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.
Resumo:
The phytoplankton community structure, in terms of species composition, total standing crop, and abundance of the dominant algal species, at four stations in Donghu Lake, Wuhan, China, was investigated monthly from January 1994 to December 1996. A total of 260 taxa was observed, of which Chlorophyta (106 taxa) contributed the highest portion of the total number of taxa, followed by Bacillariophyta (82 taxa) and Cyanophyta (32 taxa). The total standing crop measured by means of chlorophyll a content, cell density, and cell biovolume, as well as the abundance of the dominant species, declined in the order of Station I to Station IV. Seasonal changes of the standing crop varied greatly among the four stations. Although the cell density at the four stations showed a single peak within a year, the peak density varied from July to November, dependent on the sampling year and the station. For chlorophyll a content and cell biovolume, multiple peaks were observed at Stations I and II, but a single peak was found at Stations III and IV. The phytoplankton community structure indicated that the trophic status was the highest at Station I (most eutrophic), followed by Station II; Stations III and IV were the least trophic areas. The long-term changes in phytoplankton community structure further suggested that changes in phytoplankton community structure were correlated with water quality, and eutrophication of Donghu Lake had been aggravated since the 1950s.
Resumo:
From surveys made in 1962-1963, 1973-1974, 1979-1996 at two Stations in Lake Donghu, a shallow eutrophic water body near Wuhan, P. R. China, the authors, derive long-term changes in species composition, standing crop and body-size of planktonic crustaceans. The species number decreased from the 1960s to the 1990s. The cladocerans dropped from 46 (1960s) to 26 (1980s) to 13 (1990s); the copepods decreased from 14 (1960s) to 10 (1980s) to 7 (1990s). From the mid-1980s on, the dominant crustaceans also changed: Daphnia hyalina and D. carinata ssp. were replaced by Moina micrura and Diaphanosoma brachyurum at Stations 1 and 2, respectively; Cyclops vicinus replaced Mesocyclops leuckarti. Densities and biomass of Cladocera decreased markedly after 1987. Annual average densities and biomass of cladocerans were statistically differences between 1962-1986 and 1987-1996 (P < 0.01). Annual average densities of Daphnia (Station 1 + Station 2) were negatively correlated with fish yield. Since the 1980s, annual average body length of Cladocera and Calanoida decreased, while annual average body length of Cyclopoida increased. In the same years, average body length of copepods was lower during May-October than during January-April and November-December. A 12-yr data analysis showed annual average concentration of chlorophyll-a (Chl-a) to be negatively correlated with annual average density of Daphnia, whilst lake transparency was positively correlated with annual average densities of Daphnia. The results imply that, since Daphnia feeds efficiently on phytoplankton, it could decrease concentration of Chl-a, and enhance water transparency.
Resumo:
Taihu Lake is the third largest fresh water lake in China. With the fast economic development, abundant industrial and agricultural waste water has been discharged into Taihu Lake, causing the eutrophication of the water quality, which greatly affected the water utility. In the past decades, the treatment of Taihu Lake has witnessed limited success. Therefore, it is practically and theoretically significant to study the eutrophication of Taihu Lake. This research has focused on the issue of water quality including the characteristics of spatial and temporal distributions, and the rules of nutrient diffusion in the Taihu lake area. Based on the monitoring data, the basis distribution characteristics of water quality in Taihu Lake are analyzed. Comparing Taihu Lake with other Lakes shows that one important reason for Taihu eutrophication is the long period of water retention. A transporting and diffusing model of Taihu nutrient is developed by combining with the hydrodynamics model. Using the model, the concentration field of the total phosphorus (TP) and the influence of wind-driven current are numerically investigated, which leads to the conclusion that the flow field has a great influence on the spatial and temporal distributions of TP in Taihu Lake. Furthermore, the effect for improving the water quality by the project of water diversion from the Yangtze River to Taihu Lake was analyzed by simulation. The results demonstrate that short-term water diversion cannot improve the water quality of the heavily-polluted Meiliang Bay and the western bank areas of Taihu Lake.
Resumo:
This paper deals with a case study of the restoration of submerged macrophytes for improving water quality in a hypertrophic shallow lake, Lake Donghu of Wuhan, Hubei Province, China. Macrophyte restoration experiments were conducted in large-scale enclosures established in three sublakes of different trophic status, and the effectiveness for water quality improvement was tested by using the enclosure experiment in the hypertrophic sublake. Water quality was remarkably improved after the reestablishment of aquatic macrophytes. It is suggested that the submerged vegetation of less polluted sublakes could be capable of recovering spontaneously once the stocking of herbivorous fishes has been ceased, and the K-selected plants such as Potamogeton maackianus should be introduced into these sublakes to enhance the stability of aquatic vegetation. However, it may not be possible and economical to restore the submerged macrophytes in severely polluted basins unless external pollution has been cut off and internal nutrient loadings considerably reduced. In this case, the r-selected submerged plants should be used as the pioneer species for macrophyte recovery. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A self-organizing map (SOM) was used to cluster the water quality data of Xiangxi River in the Three Gorges Reservoir region. The results showed that 81 sampling sites could be divided into several groups representing different land use types. The forest dominated region had low concentrations of most nutrient variables except COD, whereas the agricultural region had high concentrations of NO3N, TN, Alkalinity, and Hardness. The sites downstream of an urban area were high in NH3N, NO2N, PO4P and TP. Redundancy analysis was used to identify the individual effects of topography and land use on river water quality. The results revealed that the watershed factors accounted for 61.7% variations of water quality in the Xiangxi River. Specifically, topographical characteristics explained 26.0% variations of water quality, land use explained 10.2%, and topography and land use together explained 25.5%. More than 50% of the variation in most water quality variables was explained by watershed characteristics. However, water quality variables which are strongly influenced by urban and industrial point source pollution (NH3N, NO2N, PO4P and TP) were not as well correlated with watershed characteristics.
Resumo:
Lake of the Woods (LOW) is an international waterbody spanning the Canadian provinces of Ontario and Manitoba, and the U.S. state of Minnesota. In recent years, there has been a perception that water quality has deteriorated in northern regions of the lake, with all increase in the frequency and intensity of toxin-producing cyanobacterial blooms. However, given the lack of long-term data these trends are difficult to verify. As a first step, we examine spatial and seasonal patterns in water quality in this highly complex lake on the Canadian Shield. Further, we examine surface sediment diatom assemblages across multiple sites to determine if they track within-take differences in environmental conditions. Our results show that there are significant spatial patterns in water quality in LOW. Principal Component Analysis divides the lake into three geographic zones based primarily on algal nutrients (i.e., total phosphorus, TP), with the highest concentrations at sites proximal to Rainy River. This variation is closely tracked by sedimentary diatom assemblages, with [TP] explaining 43% of the variation in diatom assemblages across sites. The close correlation between water quality and the surface sediment diatom record indicate that paleoecological models could be used to provide data on the relative importance of natural and anthropogenic sources of nutrients to the lake.
Resumo:
Although Microcystis-based toxins have been intensively studied, previous studies using laboratory cultures of Microcystis strains are difficult to explain the phenomenon that microcystin concentrations and toxin variants in natural blooms differ widely and frequently within a short-term period. The present study was designed to unravel the mechanisms for the frequent variations of intracellular toxins related to the differences in cyanobacterial colonies during bloom seasons in Lake Taihu, China. Monitoring of Microcystis colonies during warm seasons indicated that the variations in microcystins in both concentrations and toxin species were associated with the frequent alteration of Microcystis colonies in Lake Taihu. High concentration of microcystins in the blooms was always associated with two Microcystis colonies, Microcystis flos-aquae and Microcystis aeruginosa, whereas when Microcystis wesenbergii was the dominant colonial type, the toxin production of the blooms was low. Additionally, environmental factors such as temperature and nutrition were also shown to have an effect on the toxin production of the blooms, and may also potentially influence the Microcystis species present. The results of the present study provides insight into a new consideration for quick water quality monitoring, assessment and risk alert in cyanobacterium- and toxin-contaminated freshwaters, which will be beneficial not only for water agencies but also for public health. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m(-3)) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 mu m fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass. (C) 2008 Elsevier B.V All rights reserved
Resumo:
We examined the responses of zooplankton community, water transparency, chlorophyll a and nutrients to manipulation of density of silver carp (Hypophthyalmichthys molitrix) in an one-way factorial experiment using enclosures placed in Donghu (East Lake, 30 degrees 33' N, 114 degrees 23' E), located in Wuhan, P. R. China. Enclosures (18.75 m(3)) were treated with four silver carp densities, 0, 81, 225, 485 g/m(2). Total zooplankton abundance (excluding nauplii and rotifers except for Asplanchna sp.) and the mean size of dominant cladoceran species were significantly greater in enclosures with 0 and 81 fish densities than those in enclosures with 225 and 485 fish densities. Water transparency also improved significantly when silver carp densities were 0 or 81 g/m(2). We did not find significant effects of silver carp density on chlorophyll a, total phosphorus, or total nitrogen concentrations. We conclude that by reducing planktivorous fish to below the current density (190 g/m(2)), the zooplankton community can be shifted from the dominance of small-bodied Moina sp. to dominance of large-bodied Daphnia sp. Further, the water clarity can be increased.
Resumo:
Since its completion in 1973 the Danjiangkou Dam has markedly changed downstream flows, water levels, temperatures, sediment loads and other water quality characteristics in downstream reaches of the Hanjiang River. There have been changes in the growth, spawning behaviour and overwintering condition of local fish populations, in the composition and abundance of food organisms and in the composition of the commercial fish catch. Despite the changed environment and the absence of a fish pass, fish populations are still able to grow and spawn under the new regime. Where conditions are like those of the Hanjiang River, dams may not necessarily have calamitous consequences for fishery production.