21 resultados para ESCAPE PHENOMENON
Resumo:
Polarization self-modulation effect in a free oscillated Nd:YAG laser is investigated after a quarter wave plate is introduced independently in the two positions of the cavity. As described in the previous experiments, the intensity components in the orthogonal directions are modulated with a period of the round-trip time or twice. Different pulse shapes reveal that the seed field from the spontaneous emission is not uniform and seems to be stochastic for each pulse.
Resumo:
In this paper, we study nonlinear Kramers problem by investigating overdamped systems ruled by the one-dimensional nonlinear Fokker-Planck equation. We obtain an analytic expression for the Kramers escape rate under quasistationary conditions by employing
Resumo:
It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.
Resumo:
Real-time phase shift Mach-Zehnder interference technique, imaging technique, and computer image processing technique were combined to perform a real-time diagnosis of NaClO3 crystal, which described both the dissolution process and the crystallization process of the NaClO3 crystal in real-time condition. The dissolution fringes and the growth fringes in the process were obtained. Moreover, a distribution of concentration field in this process was obtained by inversion calculation. Finally, the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed. The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.
Resumo:
We experimentally study the ac Stark splitting in D2 line of cold Rb-87 atoms. The frequency span between the Autler-Townes doublets is obviously larger than that derived from theoretical calculation. Two physical effects, which increase the effective Rabi frequency, contribute to the splitting broadening. First, atoms tend to distribute in strong lield places of a inhomogeneous red-detuned light field. Second, atoms reabsorb scattered light when they are huge in number and high in density.
Resumo:
An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range. of intensity reverse between red and green fluorescence of Er( 0.5) Yb( 3): FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32 x 10(2). It is calculated that the phonon- assistant energy transfer rate of the electric multi- dipole interaction of {(4)G(11/2)( Er3+) -> F-4(9/2)( Er3+), F-2(7/2)( Yb3+). F-2(5/2)( Yb3+)} energy transfer of Er( 0.5) Yb( 3): FOV is around 1.380 x 10(8) s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20 x 10(5) s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194 x 10(5) s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er( 0.5) Yb( 3): FOV. (C) 2007 Optical Society of America.
Resumo:
Repeated low-dose morphine treatment facilitates delayed-escape behaviour of hippocampus-dependent Morris water maze and morphine withdrawal influences hippocampal NMDA receptor-dependent synaptic plasticity. Here, we examined whether and how morphine wit
Resumo:
The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.
Resumo:
By using the envelope function method we calculated the tunneling escape time of electrons from a quantum well. We adopted a simplified interface matrix to describe the GAMMA-X mixing effect, and employed a wave packet method to determine the tunneling escape time. When the GAMMA state in the well was in resonance with the X state in the barrier, the escape time reduced remarkably. However, it was possible that the wave functions in two different channels, i.e., GAMMA-GAMMA-GAMMA and GAMMA-X-GAMMA, could interfere destructively, leading the escape time greater than that of pure GAMMA-GAMMA-GAMMA tunneling.
Resumo:
Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.
Resumo:
By considering the time variation of band-edge profile arising from the decay of injected charge in quantum wells(QWs), we employ a wave packet method to verify that the actual escape time of certain amount of electrons from QWs could be much larger than that for a single electron. The theoretical result is also in agreement with our measurement of escape time, performed by using a newly developed method--transient current response.
Resumo:
Polymethacrylate-based monolithic columns were prepared for capillary electrochromatography (CEC) by in situ copolymerization of butyl methacrylate (BMA), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and ethylene dimethacrylate (EDMA) in the presence of a porogen in fused-silica capillaries of 100 mum I.D. The abnormal phenomenon that retention factors for neutral species decreases with applied voltage in CEC was observed. Capillary electrophoresis (CE) instruments usually require a period of time to increase voltage from 0 kV to desired value, which is called as ramp time. Such ramp time and any error in the determination of dead time should be taken into account during the accurate calculation of retention factors. After the correction of the retention factors, the plots of the corrected factors for alkylbenzene versus applied voltage were made, the absolute value of the plot slopes are less than 1.8 X 10(-4), Which indicates that the corrected retention times for neutral species do not show any dependence on applied voltage. Further, the plots of the corrected retention times for acidic and basic compounds versus the reciprocal of applied voltage were drawn, where the target compounds were eluted in neutral form. The very nice linearity of the plots was obtained. The linear correlation coefficients are over 0.999. Here, the slopes of the plots represent
Resumo:
We observed that the SrMg2(PO4)(2):Eu phosphor could emit long life phosphorescence with the excitation light whose wavelength was shorter than 420 nm, however, when La, Ce, or Gd was codoped, the wavelength of the excitation light to cause the phosphorescence had a redshift of 40 nm. A possible mechanism and related discussion for this redshift phenomenon of the excitation light was given. It was suggested that the threshold between the trap and valence band was decreased with the addition of the codopants.
Resumo:
The dependence of the differential capacitance of polypyrrole doped with several typical dopants on potential is presented, which shows that the differential capacitance varies with the potential, the doped polypyrroles with electroactive ions give the largest capacitance near their formal potentials, which is attributed to the mutual media for electron transfer between polypyrrole and electroactive dopants. The existence of two conducting phases was observed in the complex capacitance plots. The electroactive anions act as an intra-conducting-phase medium for electron transfer, the electroactive cations act as an inter-conducting-phase medium for electron transfer. The mutual media between polypyrrole and redox dopants lead to the increase of the discharging time.