140 resultados para EMBEDDED GENERATION
Resumo:
Laminar-flow non-transferred DC plasma jets were generated by a torch with an inter-electrode insert by which the arc column was limited to a length of about 20 mm. Current–voltage characteristics, thermal efficiency and jet length, a parameter which changes greatly with the generating parameters in contrast with the almost unchangeable jet length of the turbulent plasma, were investigated systematically, by using the similarity theory combined with the corresponding experimental examination. Formulae in non-dimensional forms were derived for predicting the characteristics of the laminar plasma jet generation, within the parameter ranges where no transfer to turbulent flow occurs. Mean arc temperature in the torch channel and mean jet-flow temperature at the torch exit were obtained, and the results indicate that the thermal conductivity feature of the working gas seems to be an important factor affecting thermal efficiency of laminar plasma generation.
Resumo:
The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
报道热等离子体射流产生及射流特性的实验研究结果。。采用同一个直流等离子体发生器,工作气体流量小时产生出层流等离子体长射流,射流长度随气体流量或弧电流的增加而明显增加;工作气体流量大时则产生出湍流等离子体短射流,此时射流长度几乎与工作气体流量或弧电流无关;在层流与湍流等离子体射流工况之间,存在一个流动状况不稳定的过渡区,此时等离子体射流的平均长度随气流量的加大而减小,但随弧电流的加大而明显加大。层流等离子体长射流有相当好的刚性。
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.
Resumo:
The nearest-neighbour Lennard-Jones potential from the embedded-atom method is extended to a form that includes more than nearest neighbours. The model has been applied to study melting with molecular dynamics. The calculated melting point, fractional volume change on melting, heat of fusion and linear coefficients of thermal expansion are in good agreement with experimental data. We have found that the second and third neighbours influence the melting point distinctly.
Resumo:
An embedded cell model is presented to obtain the effective elastic moduli and the elastic-plastic stress-strain relations of three-dimensional two-phase particulate composites. Each cell consists of an ellipsoidal inclusion surrounded by a finite ellipsoidal matrix that embedded in an infinite matrix. When both matrix and particle are elastic, the effective elastic moduli are derived which is an exact analytic formula without any simplified approximation that can be expressed in an explicit form. Further, the elastic-plastic stress-strain relations are obtained for spherical cells and oblate spheroid cells, in which the matrix is elastic and the particle is elastic-plastic. In addition, the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC) is investigated by a systematic approach [1] in which the matrix is elastic-plastic and the particle is elastic.
Resumo:
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 fi,Hes its diameter could be generated with a DC are torch by! restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including are channel geometry gas flow I ate, and feeding methods, etc. Influence of flow turbulence at the torch,nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet, with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent are let.
Resumo:
An embedded cell model is presented to obtain the effective elastic moduli for three-dimensional two-phase composites which is an exact analytic formula without any simplified approximation and can be expressed in an explicit form. For the different cells such as spherical inclusions and cracks surrounded by sphere and oblate ellipsoidal matrix, the effective elastic moduli are evaluated and the results are compared with those from various micromechanics models. These results show that the present model is direct, simple and efficient to deal with three-dimensional tyro-phase composites.
Resumo:
Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.
Resumo:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.
Resumo:
Self-organized generation of transverse waves associated with the transverse wave instabilities at a diverging cylindrical detonation front was numerically studied by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. After solution validation, four mechanisms of the transverse wave generation were identified from numerical simulations, and referred to as the concave front focusing, the kinked front evolution, the wrinkled front evolution and the transverse wave merging, respectively. The propagation of the cylindrical detonation is maintained by the growth of the transverse waves that match the rate of increase in surface area of the detonation front to asymptotically approach a constant average number of transverse waves per unit length along the circumference of the detonation front. This cell bifurcation phenomenon of cellular detonations is discussed in detail to gain better understanding on detonation physics.
Resumo:
Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.